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1. INTRODUCTION

 The C*-algebra O, generated by n-isometries with orthogonal ranges was

inroduced by Cuntz in [6] and shown to be simple and independent of the chojce

“of generators. These C*-algebras (for 2 < 7 < o) are closely associated with the

ull #-shift in topological Markov chain theory [8,9] and are C*-analogues of factors

of type I'lL,,,. They became important initialty through providing counterexamples
| iovarious questions but subsequently have become interesting C*-algebras in their
| own Tight.

f. In [9] the third author gave a construction of 0, from annihilation and crea-
tion operators on a full Fock space and began an investigation of certain states
,_aﬁd automorphisms which are natura] analogues of quasifree states and quasifree

”"’%ﬁtomorphisms on the CAR algebra. These states and automorphisms on 0, are also
termed quasifree. Mainly type I states were analysed in [9] while here we proceed to

wvestigate further properties in the non-type I case.

. The properties of quasifree states on O, are more complex than in the CAR

-tase (for example they need not be factor states) and we concentrate on those which

‘are “compatible” (in a sense made precise below) with the structure of the stable

gebra ¥®O0, as a C*-crossed product C*{F,, Z} of an AF-algebra F, and the

shift.

“4 . We investigate firstly (in Section 3) the question of when the shift, as an auto-
‘{“m})rphism of F,, isextendable to an automorphism of the weak closure, in the repre-
”‘ﬁlitation of F, obtained by restricting a quasifree state of €®0,. When the shift
‘i"mplcmentable, the von Neumann algebra generated by ¥®0, in a quasifree
te, is identified with a W*-crossed product. This identification enables us to give
ficient conditions for a quasifree state to be a factor state. The criterion of pri-
‘itiness in the general situation (Theorem 3.5) is shown by a different method. We:
lhtn g0 on, in § 4, to show that the quasifree automorphisms defined in [9] are usual-'
Y outer (Theorem 4.3). In particular, in the canonical quasifree state on O,,
n < 00, no quasifree automorphisms are weakly inner while for O they are

b




248 H. ARAKIL A. L. CAREY and D. B pyaNs -

uniformly outer but weakly inner. This improves results of [I, 7, 9) where it was
shown that every quasifree automorphism of 0, for n < oo, is not uniformly inger,

2. PRELIMINARIES

If o is a complex Hilbert space, B(A) (respectively 4 (), Ho(3#) denotes

the bounded (respectively compact, finite rank) operators on#. Then A () denotes |
the C*-subalgebra #(#) + Cly of B(AH). T(H) denotes the positive trace clas
operators X on & such that tr K < 1, if & is infinite dimensional and trx = |

'&"‘} I otherwise. The trace is always normalised so that the trace of a minimal projection
] S
ganﬁ is L. If Ke 7 (H#), let py denote the normalised state on A ):
s%
fﬁw : (2.1 PrlX+ Alp) = tr(Kx) + 4, xed(#), JeC.

% denotes the compact operators on a fixed infinite dimensional separable Hilbert
space.

.

@ giﬁﬂﬁ ; Let o7 be an n-dimensional complex Hilbert space, where 2 < n < o0, with
- | complete orthonormal basis {¢,};.;. Then O(#) is the unital C*-algebra generated |
Lapaug | | by the range of a linear map O defined on # such that {
s
(2.2) O 0Ok = Lk, D1, b, kew
(2.3) Y, Ole) Oe)* < I
i=1
with equality holding in (2.3) should # be finite. Then O =~ 0,, the C*-plgebra
™ of Cuntz,
wggg If ue U(#), the group of unitaries on 2, the quasifree automorphism O(n)
@m«w 4 Is the s-automorphism of O(#) such that O@w)O(h) = O(uh), hes#. In particular

leto, = O(2), £ T denote the gauge group. The fixed point algebra F(3#) = O(#)
0O o ———
is an AF-algebra (UHF if # is finite). F(') is the C*-subalgebra of ® ¥ (o) gene-
f=1

®© ’
rated by U @ & (o), and we let Fy(o) denote the =-subalgebra generated by

r=0 1

U ® #,(#) identified with
r=0 1 3

Un {0t ... O(h)O(f)* ... O(fD* : fi, hyedt).

¥
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Then Fu) = O(u)| F(J/’) Is the restriction of ® Ad() on ® f(Jf) to F(#).
Let e =e¢,, and define

fi == {C’ ®—E l (1)

Ly 7

\V //\

Let F(Jf) denote the C*subalgebra of the restricted tensor product 2] & =

= @ (f( #), f) generated by U @ H (), and let f= @ ﬁ, and Jet jv;fy?)

be the wsubalgebra generated by U ® H'o(H). Here & = lim Fi, where 17": =
fer o0

== @ () and F is embedded in F - byx =/, ®x Let Z act on F(Jf) by

Fei
a shift o to the right, and lo( O(W) denote the corresponding crossed product |
CH(F(#), Z). Then

QAN JORY, fRA)L,8) = (4 ® 0(#), g @ 0(#), @ F(#), id ® o) T

where & denotes the dual action, and ¢ is a fixed minimal projection in %.

IfFd ={K}® isa sequence of operators in WoF), Jet py denote the restric-
[ B g

tion of the product state (x) pK on ® A(H) to F(H#). Let P and P denote

the canonical projections of 0(%”) and O(#) on F(Jf) and F(o#) respectively,
so that P = [®F We let wy denote the state pg o P on O(#). Such a state is
said to be quasi-free. If & consists of a constant sequence, K e I, (#) say, we
write @, for wy, eg K =1 [ne T\ (#), and o, m 1s called the canonical state,

Let a,b& denote the state on F(.}t“) obtained by taking the inductive limit of

é P, ez ®pson Fi= @ ,%"(.9?) and restricting to F(#). Let ¥g =Yg o P be the
C(;rresponding state on O(#). Then under 2.4),(p i Yy on (O(#), F(H)) are iden-
tified with (P Quwsg,, pq®p%) on (¥® 0(H#), CREF(H)).

Let pg denote the weight on F(W) obtained by taking the inductive limit of

[ OO -
the weights ® (tr(+)) ® pg; on ® A () and restricting to F(t). Let By = pgr o P

denote the corresponding weight on O(3#). Then under (2.4), (G pg) on (O(F),
F(aé‘)) are identified with (tr® W U® pg) on (¥R 0(o#), CRF(#)).
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It n is finite, let Z, denote the group of integers mod 1, and let Z act on the

restricted product group 5 Z, (equipped with the discrete topology) by a shift ¢

-—C
o \
to the right. Then the semidirect product group G, = ( @ Z,,) bt Zactson X,
= ( @ Z“} o II z,) (equipped with the inductive limit topology) by translation
- 00 1

and finitely many changes of coordinates. We identify X, 11 Z, as sets. Then

@3) (C¥(X,, G, (X, @ 2,)) = (OCF), F(3#)

and the projection f is identified with the characteristic function of {x =(x;) <
X, x;=0, <0}

For each (i, j) i=12,..., /€ Z, let x;; be a positive real number with
Vo, =1, and let &= {;}:, ;- Let g, denote the probability mieasure on Z,

n
given by p,(j) = %;;, and K; = Z %0 ® €€ T\(H), H = {K;}52.. Let #,

denote the product measure H 1; on II Z,. Let v,'Ef denote the probability
feal i=1 i
(1]

measure on X, obtained by taking the inductive limit of the measures HENCYE g on
; .
HZ,,, where 8 is the Dlrac point measure at 0. Let Q denote the canomcal

pl'Q]CCUOD of C*(‘Yn: Gn) on CO(*XH) and Q{) that of C* (‘X’ns @ Zn) on CO(‘X ).
Then under the identification (2.5), ((p3C, J ) on ( 0(H), F(3#)) corresponds to

((P ° Q, J QO) on (C*(X-n) Gn) C*(Xlﬂ @ Zn))

Let fi,, denote the (mﬁmte) measure on X, obtained by taking the inductive limit

oo

9
‘of the measures (I;I 5) K|y o ] Z,, where § is counting measurc on Z,. Then
g i
the weights (fig;o [y a® Oo) on (C*(X,, G,), C*(X,, ®Z,)) are identified with
@y, Py) on (O(#), F(#)). .

More details on'these identifications may be found in [6] and [9].
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5. THE SHIFT

We first consider the question of implementability and extendability of the
shift automorphism ¢ on F(#). Let & = {K )%, be a sequence of operators in
T (), with K; > 0. Then p% is a faithful weight on F(s#), and if RNg=

={xe F(H) D Py X¥x) < co}, there exists an injective map Ay from &y into a

Hilbert space 3.5% and a representation 7, of F(H) on o, such that

(3.1) (Ag (%), Ay (1)) = Dy (V*x), X, ye Ty
.2) T (0)Ax(y) = Ag(xy) x€ F(H), ¥ ey
3.3) {Age (1) : ye gy =y

The triple (‘Z’Tm, ) can be identified as follows. Let H; denote the Hilbert-

Jb

Schmidt operators on J, for ie Z and

Q=KPjiz21, Q=e®€ if i <0, so Q;eH,.

Under the identification O(#) = A @ O(H), Dy = Y /i, where f=
f=1

= ph!@';,—l_@cow, where {A;}%, is a complete orthonormal set in the underlying

Hilbert space for @. Then (of. [4]) #, = @ H#(/), where (H(f), m, 6) is

i=1

the GNS triplet for the state f;, and A4 (x) corresponds to @ (n(x)0), xe My
S ]

It is then clear that if &, = lin{/, ®7;j}, that Ag(#y @ Fo(s#)) is dense in y?gb
Then 4o ® Fy(#) = Fy(#), and define a map -

Ag: By () — ® (H;, @)= Jf’“
by

Ag(x) = ® Q@(@J’i)@(@ 25

1<j6 I>ju

i x = @;. e ,ifo(yf), and p, = %2, i 2 1, yy=x,, i < 0. It is clear that

~Jq ~J
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there exists a representation ﬁl; of F(HA) on Hg such that Fy(x)Ag(¥) = Ay(xy)

if x, 3 € Fo(3#). Morcover (Ay(x), Ay(3)) = Py(0*x) = (A (x), Ag(GDy x, yef
e F,(sF). Hence therc exists a unitary U of Hy = [4,(Fo(2#))]~ onto Hy =
= [Ag (Fy(# NI~ such that UAy(x) = Ag(x), x & Fy(#). In this way we can ||
identify (# g @,) with (Hg> 7).

TueorEM 3.1, If {K)22, is a sequence in (), the following conditions are |
equivalent : "
(3.4) o extends to an automorphism, also denoted by o, of the von Newumann gigebra | -

e F(A)) '
(3.5) o is implemented by a unitary on H -

(3.6) T (1 — tr(KHER}HE)) < 00,
f=1

e —
Inn this case the shift on @ (H;, Q) = H'y exists and implements o.
—00

Proof. We first prove the equivalence of (3.6) and (3.4).
Step 1. For a product state, the modification of K; (i > 0) to X such that
te(K})? =1, K/ > 0 and % ||K; — K{|lkis < 00 yields the same von Neuman
i A
algebras (spatially, the one with K; is a restriction of the other).
Since
3t (KPEK) — (KPR <

i

< ¥ juE? — KK+ L aEPEEE - K] <
i 1
< Y {[tr (K — K} o+ [ (KR — KT} <00,
i

this change does not alter the problem. So we assume K, > Qforalli>0.
For (3.6), we may restrict our attention to the GNS representation of the state {

l//m (equivalently the cyclic subspace of ng(F(#))"” on the product vector f

(2] p
® (KM% with K, = e; ®7, for i < 0) because the difference with g is only for

i e 00

Cin F(o#) = C® F(s#) and does not affect the von Neumann algebra.
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Srep 2. Instead of shifting the algebra, we can shift the state. The problem is
then the comparison of two product vectors ® {K}?} and @ {L¥2} with L; = K4,
for the same product C*-algebra F(3#). Since K, = L, for { < 0, we can restrict our
attention to 7 > 0. Furthermore we may modify X, to K, so that K = L,. Thus

we have only to compare ¢ == @ K}? and s = é e,
i=1 i=]
Since (3.6) implies that @ (3, kM) and @ (A, Li?) can be identified, (3.6)
il feml
tplies (3.4). We prove the converse. (Note that & and 1 are cyclic by Step 1.)

Step 3. Since the vector at each i is cyclic and- separating, the staté satisfies
the KMS condition for the product of modular automorphism (as C*-algebra)
and hence cyclic and separating (on the weak closure). If p and p' are faithful
states on one von Neumann algebra M, then || p — p'||<2. This is because || p— p'|| <
< ll¢p — EpllHIE, + &1l for vector representative &s in the positive cone, then
$ps €} > 0 for faithful p and p’ which implies

H‘:p - ép'”gligp + ‘;‘:p'nz = 4’ (1 - (éps ép')) < 4’

Step 4. If M, is a subalgebra of M, then

p|My—p' | Ml < llp— p'll < 2.

N N
We take a finite product as a subalgebra. Then &y = ® K2 and ny = o LH®
{=1 i=1
are representative vectors in the positive cone and hence ‘
Ex — nulP < flp | My — p'|M) < Jlp — o'l < 2.
Hence
N
T (K202 = (Eyy ) 21— (lp — p'll/2) > 0.

fuel
Since 0 < tr(K}MLY) < 1, this implies
<0
Y (1 — tr(KMLYY) < oo
f==l '

The question of the equivalence of (3.4) and (3.5) is whether an isomorphism
is spatial. Since we are dealing with an automorphism of a factor, it is always
spatial.

REMARK 3.3. If & = {K;}{2; is as above, then @y is a faithful weight on
0(o2), and if FF = {x € 0(#): Bg(x*x) < oo}, there exists an injective map
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A¥ from &M into a Hilbert space #% and a representation of O(#) or .
such that

3.7 (A (), A% ()Y = Bg(V*x), X, ve a¥

{3.8) A AN () = AN(xy), xe OF), ye ¥,

(3.9) (A%(p): y e N¥Y - = #E,

The triple (#%, 7%, A¥) can be identified as follows:
W"} P Under the identification (2.4), a dense subalgebra of the algebraic tensor +
”ﬂ duct C, @ O4(3) embeds into Oy(#), where On(#) is the x-algebra gener.

g,gs by {O(h) = h e #}, and Oy(#) is the s-subalgebra of O(H#) = C*(F(H), 21 :.
¥ erated by Fy(#) and the shift. Hence as for § p‘)‘,, we see that A“‘(Oo(a%")) T

o : o S N
%@3% ; in ¥, 1T we think of Oy(#) as functions from Z into Fy(#’) with finite sup;:
and twisted convolution, define a map A;‘ from Oy(3#) into /*(Z, .;f?&«} b

g

“B
W
2
i 4@

AP = © Ag(ftm). [ <O0uP)

;
é

Then (AF(f), AT(8)) = By le*f) = (A¥(f), A%(g)). Hence we can ider -
(HZ, Hy) =[AFO0( ) with #F = [4%(0(o)]), and then 7 s the
presentation of the crossed product C *(?Y?f), Z) induced from the representi

morphxsm of 7y (F(#))" = 811{ we can 1dentlfy n&"(O(H))“ = JTLJC with the or
ed product W*(ellm, Z).

|
r‘:’,
Q
-
xy
e
\r‘
.._.}
=
o
=
[
wy
E
—
=
(¢4
'O
=
o
Q
-
(=}
-
~—
\O
=3
jmad
<
[«
”~
o
B
LAJ
—
L:_.J
=
Q
(2]
=
R
(1]
o]
(=5
w
-
<
=
=
&
SR SR

REMARK 3.4. Similarly if # is finite, and {K;}%., a commutative fams:
T (), then by [10], the associated “‘product” measure pg on X, is quasi-invar

under G, if and only if

(3.10) K30 i=12,...
Gy 3 (1 — tr K¥2KHE) < oo,
I k
1

In this case Sy = A%(0())" is isomorphic to the W*-crossed product H*-

g, G,). It is clear that(X,, ug) is G,ergodic since it is afready ¢ #
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ergodic. If uy is not discrete, them for each g in G, g0, {x: gx =x}is
countable, hence of yy-measure zero. Thus (J na Hge, Gy) Is free. In this case
WX, figg, Gp)isa factor [12].

More generally, in the case where the {K;} do not necessarily form a commuta-
tive family:

THEOREM 3.5, Suppose 2 € n < co, and & = {Kii21 a sequence in T \(A).
Then the following conditions are equivalent :

(3.12) Wy 15 not factorial
d ) LA

(3.13) Y (1~ trK}2K{2) < 00 for some s > 0, and Py is type 1.
=1

Proof. We first show that if

o

(3.14) \ Y (I —trKIPK2 Y < oo
i=l
(3.15) (1 —trK{PKHE)y =co for0<r <y
=1
for some 5 > 0 then
(3.16) center B O(A7))"" = center W (g (F()), 0°) |
and if
(3.17) Y (L — trK2KY2) =00 for all r > 0.
=1

Then F(O(#))" is a factor.

Write 7N =/*Z, 3?35) = @ I, where #; = #’y;, and represent an opera-
f leZ

tor 7 on @2, by a matrix [7,], where T}; & # (#, ;). The representation 7% of
{
O(H) is the representation obtained from the following covariant representation

18,2) of (F(A#), Z, 0):

0(x) = [Tgo " (x))iez,
z diagonal matrix

(Am)f) (n) = f(n — m)
for & F(A), felX (L, #x), myned.
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Let p, denote the projection of @1,']?' on @ #. Then if (3.14) and (3.1
H=Y: icZ
hold '

WHESF)) po) MS)pgr = WH(Ry(F(#Y ', 0%

where the left hand side is the von Neumann algebra generated by {7¥(x)p,, (s |

A

B A

IS I

:x e F(#)) and the right hand side is the W*-crossed product which exists ¥ "

(3.14). Let T = [T} e 7% (O(A))’. Then since T commutes with the shift 2,

Ty = S0 = j)

for some map S: Z — (A y). Morcover, since T commutes with 0(x), xe Firl

we have:

Ty (a= (X)) S( — 1) = S —J)Fg(o~/(x))

for x € F(#), i,j€ Z. By (3.15) and Theorem 3.1, igzo~" and Fgo™! are disjsi:':;

representations if i — j is not divisible by 5. Hence S(r) = 0if § does not divid
Hence we see that the map T — T'p, takes

#FH(O(A)) onto W (Fy(F(H))", o*)
and moreover it is easily seen that this map takes

7Oy n[FH0(#))Y

onto F

W*(ﬁ;{‘(F(yf)))”, O,S)I n [W*(igﬂ(ﬂ——‘#))ll, 0_5)/]/.

The remaining claim concerning (3.17) is now clear. Theorem 34 is nowa consf
quence of the following lemma:

Lemma 3.6. I Y, (1 — tr K{PKGE) < oo, and pg is not type I, the
=

W(ig (F(##))", 0) is a factor.

Proof. By Connes [5] it is enough to show that every non-trivial power of 1k
shift on 7ig(F(5#))" is outer. By regrouping it is enough to consider the case of it
shift o itself. Thus suppose ¢ is inner, implemented by a unitary W in @z(Mu A

. ie
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Regarding M, as a Hilbert space (containing Q; == X}/?), on which M, acts, let

A =

H

{C*(,M,,, M) = B(M,) even
1 i odd.

Then 4 = ® (4;.@)istype . Let f = Ad(w)|4. Then
igZ

A= fid= @ (B;, Q)
ieZ
where

B, = M, iodd
M, i even.
Then 4 = [g‘) (M, Q00 )] ® [@ (M, Q4]
Hence ® (M,, 25;4,) is type 1, and similarly, so is ® (M, Qy;). This contra-

dicts pge not being type I, and the lemma follows.

4. QUASI-FREE AUTOMORPHISMS

If 1 is a unitary on #, we consider the question of implementability of O(x)
on O(JF) in various quasi-free representations.

If 8 = [K} is a sequence of operators in 7, (#), we let (n™, 2%, Q%)
denote the GNS triplet for wy,. The GNS triplet (my, Ay, Q4) of py can then

be identified with the representation my(-) = n(:) {36”57{-, on Hg = [F(#)Q%)-,
with cyclic vector @y = Q% Since wg is gauge invariant, there is a strongly

continuous unitary group {F,: e T} on #% such that
4.1 o, (x) = Fat(x)F¥; xe0(#),
4.2) F Q2 = Q4.
We let &, = Ad F, denote the induced action on Iy = a%(0(#))", and

bt fyp = ay (FE)).
We first prove a positive result.

PROPOSITION 4.1, Let 2 < n < oo, H = {K}2, a sequence of operators in
Ty and u a unitary on A,
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] -

(a) F(u) is implementable in py if and only if ¥} (1 — tr K} Pukiy sy <ok

i=1

If F(u) is implementable in pg then O(u) is implementable in wyg, .
(b) F(u)isweakly inner in p . if and only f

o
Y (I —jtruk;]) < co.
i=1

When this, and the equivalent conditions of Theorem 3.1 hold, then Ot
weakly inner in wy.

Proaof. (a) F(u) is implementable if and only if ® p, and ® p, ¢ ATE ULE
i i1

i=1 i

rily equivalent, which is the case if and only if

o0
Y (1 — tr KPukiu*) < oo
==

i

Suppose that F(u) is implementable by a unitary U, on #'g. Then Uy =x§
shows that FUQy = UQg for alt teT. Hence for ey, ...,e;, fi,..-0F

Gis ov s &ov My o B, € we have
{O(ue)) ... Olue))Oufy* ... O{lffl)*UOQg;{;s
O(ugy) ... Oug,) O(uhy* ... O(ul)*UpQy> =
= {UFOWh) ... Oluh)O(ug)* ... O(ug)*O(uey). . .
. Oue)y O@uf)® ... O ) Upfy s Qg =
= (UFF,O(UR,) ... O(URY*FiUQyg, Qy) =
= (UFOUR) ... O(UR* UpQgr, Qg 141 ris=
= (O(ly) ... O(fiY*Qge, Q) O1ar pss = (a8 Flu) = AdLH
=(0(e;) ... 0(e)O(f)* ... O(f)*Qy, O(&) .. O(8)OU)* .. O™z,

Hence there exists a well defined unitary U on 2% such that U(x{2g) =00n)(x}Ue2;
for x € O(#). In which case O(u) (x) = UxU* for x € O(3#).
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(b) The argument of Connes [5, 1.3.8] establishes the first part. Suppose that
Uy implements F(u) in 7y, and U, € mg(F(£°))”. Then the only extension of U,
which - implements F(1) is the one defined in (a), and we have to show it lies in
= (O())".

Regard 7% as the representation
a - 7¥(faf), aeO(#)on #(f)HF

where (§2) /= ® f, is the identity of F(#). Moreover #* is the representation
-0

on et = £Z, .7?35) induced from g . Thus 7% is obtained from the covariant
representation of (ﬁ?{’ﬁ), Z, o) given by:

(A7) (s) = (s — m)
(8(a) @) (s) = mg (a*(a))p(s),

for ae F—-(—')—?;)\ P elNZ, Hy).

0 oo -
According to Connes [5, 1.3.8] U, can be taken as (@ f,) ® (@ u) on Ay . Thus
-0 1
af @ k oo
0(U,) = strong im 7’{"’"( RLB®BDu® 1) .
k=00 ~ oo 1 ki1
According to Cuntz [6], under the identification (2.4),
- . 0 . 0 " o N (==
7XO(h) = ﬁﬁf(@ﬁ Y XAEYF )ﬂ.lﬁ‘qc(®f, ®® 1).

Then

0(Ua) (O[O Uo)* =

K> o0

. 0 k @ A ] oo
==stlimr‘c*‘[(@f;@?u@l@ll)(@ e®[h®'e‘1]®2®1)]><
-0 + —oo

0 k oo
Xllﬁ“‘(@ﬁ@@u*@ 1)—:

1 k+1

(] k =]
=stlim7'r8‘{® [i®Qh®e]l® (?jl@@ 1} X

LEY.) k+1
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sl 8 k o
xﬁ.lv‘c“‘(@ [i®@@u®® 1)::
- oo 1 k41
i e . . k o0 7
= st lim ﬁg‘{@) [ Re]®uE® i}x i
- & - Co 2 k41 .
wakly inn
of ¥ k+1 oo 3 Proo
xﬁ~‘“(®.f}-1®®zz*®®1)2.1= o0
- 2 k+2 J ‘ 4 % ® O
oo ~ - ﬂ ippose fo
=@ fiomenes! )= 1@
= 7 (O(uh)). wends to
§ § ‘ wed
By reducing with #%(f), we see that O(u) is implemented by 7 (f W0UNT(f) e Ten the ¢
e (O in wy .

i
REMARK 4.2. Note that if & is a commutative family, say K; = ¥ %6, ® €},
J=1 ]
. A% su
There exists a W SUpE

q an
A=0,0, |

2,,1/2,,1/2
ik %r

and u is the unitary [u]], then tr K¥2uKMu* = Y, |uy,
k,

unitary u with {412 = 1/n. I the conditions of the above proposition hald for this 1ad assur

particular u, then f“ﬁ anc
io: (1 — [te(K¥®R)/n < oo. " wwer of {
=t jows tha

In which case ‘ 1":1‘
{ @7
§ (1 — (LKM®)n?)) < oo, .~ o ey in @
il sinner ir

and so py is equivalent to the trace on F(#), and hence all of F(U(#)) is imple- 5?‘“ of 1]
Asimplem

mentable in pg.

THEOREM 4.3. Let 2 < n < 00, and & = {K}{21 a sequence in (A with

(43) | K >0 forali fixr some
X imple

4.4) w Py 15 not type L.

o
(4.5) f Y (I — tr KIKME) < co.

k i=1 .
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WES) €

»"f;){'j® ej!

exists 2}

d For this

s imph-

WF ) with |

| Then

 (4.6) {o, 1 1€ T\1} are not weakly inner in Wy

'(4,7) If {0(v): veSUW)} is implementable in Wy, and if O, for ueSU®W), is
weakly inner in wy then F(u) is weakly inner in py,.

Proof. (4.6) For this it is convenient to work with the weight Ty =t @ wy

on % ® O(#). Then with 9 = Z*(O(#))", M = #z¥(0(#))" and M — @ QM
suppose for some s€T, «, is implemented in wg by a unitary in $%. Then =
= | @ a,is implemented by a unitary in 9. Now by Remark 3.3, 51 =~ W*(&X, Z)
il & = 7y (+(o))", and under this identification, the dual action & of & on OF)
extendsto W *(@7, Z) and corresponds to the dual action of the extension of o to &,

 Let W e be the canonical unitary implementing the shift ¢ on & — Ty(F)" .
Then the dual action &, is given by

0| =id, G W)=1W, rteT.

Now suppose &, = Ad(V)

SN for some ¥ in §I, and some s in T. Then G,0,=
= &,0,, teT, shows that 5 (V)V*e M n ', But M is a factor by Theorem 3.5
 and assumption (4.4). Hence (V) = "V for some m € Z. Then W"V+ e T —
= & and implements ¢™. But by the proof of Lemma 3.6, no non-trivial

| power of the shift on & is inner, hence m=0 and ¥ € &. Then id = F(s)=Ad V|8

shows that e & n I, But & is a factor, hence &, == Ad(F) }E}i =1id and so
(5= 1.

{47) Since SU(n) is implementable in wy,, the subgroup of SU(n) which is
inner inwg; is normal. Hence if there exists u € SUm)\(T n SU(n)) such that O(@)
is tnner in wy;, then all of SU(x) is inner in wy. Now SU(n) is the union of conju-
gates of T"~%, so let v : T"~* — SU(n) be a homomorphism. Then O(v(s)), s € T*~1
 is implemented by V(s) € M = nF(O(#))" say. By §3, 9 is a factor and so

VOV =d(s, sh V(s +s) 58 eTh-1

for some map 4: (T*-1)? — T. Moreover «,0(v(s)) == O(v(s))a, teT, se T, and
 the implementability of «, (4.1), by F,, and again the factoriality of 8% shows that

V(O F, = c(t, )FV(s) teT, seT-?

é!‘or some map ¢: T® T'-1 — T.
Then FV(S)F V(') = c(t',s) d(s, s)F, 4 V(s + 57 for t,t'e T, 5,8 T,

S — 254
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Let o((t, ), (¢, §")) = c(t',8)d(s,8"), s0 that ¢ = (T X T=1)% 4T is «.'

2-cocycle. Now d is a cocycle. Hence the cocycle conditions for ¢ imply e(t't”, s
et 87 = c(t", 55") e(t', ). Using e(1, 5) = c(z,1) = 1, we see that ¢ is a b:cha

racter (sets” =1 or /" == 1). Thus y — ¢(-, ») is 2 homomorphism from T % T'-' {

into (T x T"-3)* = Z" But T X T"1 s divisible, and there are no non-zero divi-
sible subgroups of Z". Hence ¢ =1, and so F,¥/(s) commutes with F,V(s"). In parti-

cular FV(s) = V(s)F,. Then V(s) leaves [ng(F(#)Q]~ = invariant, and |
V(s)=V(s)|# g implements F(u(s)). Now V(s) € (x*(O(#)"")T, and it will follow |
that F(u(s)) is weakly inner if [n¥(0 (o))" = n™(F(#)"), since then Vo(s)e ;

& ny(F(#))".

Thus to complete the proof, note that MT = & was shown in the proof of (a).

But STC =" ® E}T‘:, 8%: A ® @l, and QET:%'” ® @’LT Hence gmrzé‘ﬁ, as desirfd,
since g (F(A))" ~ n™(F(#))". Alternatively, one can see that [z¥(0(#)y" =
= F(A#)) " isa consequence of faithfulness of pg, . The states My={{ . Qg Q)

\/
1y €9} are dense in &M, because Q is separating. But

<S&:(‘)df93p J"'qu;> = <()Q%, SF,*y’det>‘

Hence with p = S&( )dz as the projection of & onto LT, we see that P*S < 819,

Hence P*M <9, and so P is normal. Hence

MT = PO = (PO = (R ()",

An immediate corollary of Theorem 4.3 is that {&,: t € T\{1}} and {O@)wue§

€ SUMmY\[1}} are not weakly inner on O, in the canonical state wy,, if # < co. In

(L, 7, 91 it was shown that {O(u): u e U(n)\{1}} is outer on O,, provided n < . .{

We now improve on these results to show:

THEOREM 4.5. (a) If2<n < oo, {O): ue U(.%”)\{l}} is not weakly inner
mn Wy,

(b) If n =00, then {O():ue UHHY\{1}} is outer on O(F), but weakly }

inner in wy.

"Proof. (&) We suppose that (m, o, Q) is the GNS triplet for the canonical state '

wyjy o0 O(#), and {F,: t € T} implements the gauge group a, with FQ = 2, 1€ T.

Suppose u € O(#) and n(O@) (x)) = Un(x)U*, x € O(#) for some U e (OGN }
Then e,0(u) = O(u)e, shows that FUF}FU* e n(O(#))"' n n(O(#)), which is |

trivial because the canonical state is a factor ([9] and Remark 3.5). Hence FUF® =

="U for some m € Z, all t e T: By considering O(*) if necessary, we may assuine

|
|

{
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m = 0. Let S= O(f) for some fe#, ||f]| == 1. Then 4 — Un(S*)"e M¥ if &, =
= Ad F, on M = 7(0@#))". Then A*4 = A{(SMSMHY, AA* = 1, and so m(SMS™*)
is equivalent to 1 in T = n(F(#))"" (using remarks in the proof of Theorem 4.3).
But {(-) 2, Q) isa trace on n(F(H#))"". Thus M ={(SM SR, D ={1Q, Q> = .
Hence m =0, and Ue n(F(#))". Thus U is reduced by [m(F(o)R)~ = 3¢°, and
Up==U{#® implements F(u) in Py Hence F(u) is weakly inner in pyy,. Then Propo-
sition 4.1(b) shows that jtru| == n and so ueT by the converse of the Cauchy-
-Schwarz inequality. We can now apply Theorem 4.3. {Alternatively we see that # =

= % I,y where S\, = [FQF)YS™Q)™, o _,, = [F(a#)S*" Q]~ if m >0 decomposes
R|F(#) as 5 M, 2. Since

W[ S"() S = wyy, (I,

it follows that {r,:m < 0} are all equivalent representations. By rotating U if

o0
necessary we may assume U, =1. Then U= @ ". As Ue n(F()y’, and mg

-

and n_, are equivalent, this forces 7 = 1

(b) Asin (a) suppose O(u) = Ad U where U e o), u e U(H). Then afl) =
= (™Y for some m >0 say. Letting A4 = US"*¢ F(#) where S = O(f),
W =1, we see that wy(44%) =1, w,(4*4) =0 if m > 0. Hence m = 0 and

Ue F). Hence F(u) is inner. Let o, :[éx’(m} +C® 1. Then F(#)=
1 1

= U&,, and &y S o vy Then following [11], we may, given ¢ > 0, find m > 0
and a unitary U, in &, such that ||U — U, || < /2. Hence

IAdU — AdU, || < &

L

m41 m

Take y=p® xe @ H(#) < /,,,., for a finite rank projection p in ® A (),
1 1
X in J(3), then we have

m1

[[AdU () — AdU M, 0| < &pll-IEl- inll  for all &, 4 in ®© .

Letting p increase we' see that

KIUxU* — x&,, o) < ellxll- | &l - ol

for all &, 1y in #, all x in A" (#), & > 0. Hence UxU* = X, and so UeT. Hence
Fu) = id, and so U e center F(5#°) = C. Thus O(u) = AdU = id, and so u — 1.
That O(u} is weakly inner in w,, is trivial since w, is pure.
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