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Let X be a complete, nonsingular curve of
genus g > 1, Let 9:X —»J(X) be a canonical map of X into

its Jacobian variety, J(X). Assume ¢ chosen so that

o (P)

1]

0 for some point, PeX,
If D= ZdiQi is a divisor on X, we define

]

9 (D)
of degree < r on X will be denoted by W', and we extend

Zdiw(Qi). The image under ¢ of the positive divisors

this definition by setting W° = {0}.

It 1s knownfe] that Wl

1s birationally equivalent
to X, and that Wg"l determines the canonical polarization
of J(X) = w8, The object of this paper is to prove that

wl

1s determined up to a translation and reflection by J(X)
and Wg'l, (L.e., X is determined up to a birational equiv-
alence Sy the same data).

A classical version of this theorem was proved
by Torelli.[n] Weil[5] gave a modern proof, valid in the

abstract case, based on an idea of Andreotti. Other abstract

proofs were later given by Matsusaka[3] and Andreotti.[l]

¥This work was done at the Courant Institute of
Mathepatical Sciences under a CDTP Fellowship from the
Bell Telephone Laboratories, Incorporated.




The proof to be given here is based on a modification of
two of Well's lemmas which enables us to recover
Torelli's theorem as a combinatorial consequence of the
Rlemann-Roch theorem and Abel's theorem,

We begin by proving four preliminary lemmas of
which the second and fourth may be characterized as
modifications of Well's Hilfssitze 3 and 1, respectively.
Lemmas 2, 3, and 4 admit generalizations which, however,
are not needed for our purposes.

We denote, as usual, by wg the translate of WY~
by an element aeJ(X), Following Weil,[5] we denote by <W§>*
the image of Wg under the map u = - u + 9(Z) where Z is a
canonical divisor on X. We recall[E} that the sets Wg and
<W§>* are subvarieties of J(X).

Our first lemma is a known result which we prove
for convenience:

Lemma 1
g-l)* _ o 8-1
<wa = V.3

Proof: Given a positive divisor, D, of degree (g-1), there
exlsts a positive divisor D', of degree (g-1) such that

D+D’ ~ Z, where a denotes linear equivalence, By Abel's

theorem

¢(D) - a = - o(D') + @(2) - a

As the left-hand side traverses w_g'l the right-hand side

- *
traverses (w§ l) » and conversely.




Lemma 2
Let

O<Kr < 8-1 .
Then

r g=-1 g-l-r
wanb — ag W .

Proof: The implication from right to left is trivial,
Assume now that W; CZw%‘l. This means that for every
positive divisor, D, of degree 1, there is a positive divi-
sor, D, of degree g-1, such that ¢(D) + a = ¢(B) + b. In
particular, there 1s a positive divisor, A, of degree g-1,
such that a = @(A) + b, Hence, (D) + ®(4) = ¢(B), and, by

Abel's theorem

Let A’ and B’ pe positlive divisors of degree g-1 such that

A+A’ and D+D’ are canonical divisors., Then
D+D’ ~ At4pP |

Since an equivalence of this form must hold for all posltive

divisors, D, of degree r, 1t follows* that L(A’4+rP) > r+1,

*By ¢(D) we denote the dimension of the (1inear) space
of functions whose divisors are 2 -D.




By the Riemann-Roch theorem it follows that £(Z-A’-rP) > 1,
Hence, there is a positive divisor, K, of degree g-l-r such

that A’+rP+A ~ 2, whence ¢(A) = ¢(A). But then

a=q(R) +be w%‘l'r :
Lemma 3
Let
O<Kr<eg-1
Then
w817 - A w_ﬁ‘lzuewf}
and

Proof: By Lemma 2,

we=1-T Cy 81 8- 1-r sl | ewT .
-u u
Hence

we=1-r C A {W-E_l:uawf} .

On the other hand, if veW &% for a1l uew”, then uew 571
for all ueW', whence W™ C.w_%‘l and vewg'l'r, by Lemma 2.
This proves the first formula, and the second formula

follows from the equation




R
~ {W+§'l:uawr} = A {(&_ﬁ l> :uswr}

Lemma 4

Let

Let a and b be related by an equation, b = a+x-y, where

xew! ang yewd~1-T

. Then elther W§+l C:W%'l, or else

r+l g-1 _ .. r
wa r\wb N wa+x\J S

where

O\ *
5 =Wt <w§_§> .
Proof: By assumption, x = 9(R), y = ¢(R) and
¢(R) + a = ¢(R) + b, where R and R are positive divisors
of degrees 1 and g-1l-r, respectively. If R is a point of
R, we get an equation a = ®(R’) + b, where deg(R’) = g-2-r,
But then asW%-2~r and Wg+1 C;W%-l, Hence we assume that

R 1s not a point of R.

Let u € W§+1/“ W%-l. Then there are positive

divisors, D and B, of degrees r+l1 and g-1, respectively,

such that u = ¢(D) + a = ¢(B) + b, Hence

D+R ~ D+R .




If D+R = D+R, R must be a point of D and

u = 9(D) +a =o9(D") + ¢(R) + a, where deg(D’) = r, Then

r

VEW, ix

If D+R # D+R, then &(D+R) > 2, and, given any
point, QeX, there 1s a positive divisor, Q, of degree g-1,

such that D+R ~ Q+Q. Then

u=9() +a=0(Q +9Q) - ¢R) +a,

whence

g-1 32>
u g M wa e 1 veEW } <W

Since
D) () -
(wy-a C wy-a-x wb ?

the proof 1s completed,

Theorem

Let ¢:X — J(X) be a canonical map of a complete,
nonsingular curve, X, of genus g > 1, into its

Jacobian variety J(X), Then W' = ®(X) 1s determined up to

& translation and reflection by the canonical polarization

of J(X).

Proof: By a translation, if necessary, we may normalize
¢ such that ¢(P) = O for some point, PeX, Let Y be a
second curve with the same Jacobian variety, J(X), and

denote by VY the image of the set of positive divisors of




degree < r on Y under the (normalized) canonical

map ¥:Y = J(X). The theorem will be proved by showing
that 1f V81 15 a translate of W81 (i.e., 1f the
canonical polarizations are the same) then V1 1s a trans-
late of W' or of (Wl)*.

Let r be the smallest integer such that Vl Ciw§+l
or Vl C <W§+l>* for some a. The theorem will be proved if
we can show that r = O. Assume to the contrary that r>1,
(Clearly, r < g-1,) Assume, changing notation if necessary,
that Vi Cﬁwi*l. Choose xawl, yeW8 17T and set b = a+x-y,
Then, unless W§+l Cﬁw%‘l, we have

Vi wETh oyl A Bl (vt~ W) 2 (W s)
In the notation of Lemma 4. Note that, a being glven,
W§+x depends only on the choice of X, and S depends only
on the cholce of y.

We shall first show that for a fixed x, v Z wE™l
for almost all choices of y, and hence W§+l wa%'l for the
same y.

As y varies over wg-l-r’ -b varies over w_g-l—r

(a+x)°
By assumption, there is a constant k, such that V%‘l = w81

1 g-1 1 g-1 g-2
Hence, V Cwb — T CVb+k — - DeV ™",

1 g-1 g-2 g-1l-r
b f -
or which V Cjwb i1s given by - beV P\w-(a+x)‘

Thus the set of




Now, if V% C wé" L for all - pew %

a+x ) then

vl Cﬁwa+x by Lemma 3. This contradicts the assumption on

r. Hence W % (Z Vg 2, and the intersection of these

a+x

sets is a lower dimensional subset of W %a+x

We now return to consider the intersection

1 g-1 _ 1 r 1
VO wWg —<V mwa+x>u(v N 3)

It is well knownﬂz] that 1f Vl<2 w%‘l, then there is a

unique positive divisor, D(b), of degree g on Y, such that
v(D(b)) = btc (1)

where ¢ 1s a constant, independent of b, and the points of

D(b) are the preimages of the points of the inter-

LA w%‘l under v,
We show first that V&~ wl("

section V

a+x) contains at most

one point. If not, then as -b varies over almost all

points of W % (for fixed x), D(b) will contain at

a*x
least two fixed points, and hence ¥(D(b)) varies over a
translate of Vg-Q. By Eq. (1) we should then have an
inclusion of (wg-l-r)* in a translate of Vg"g, say
(we-1-ry* ¢ V%'g. But then

a Vﬁ i ung 2}-C:f\ { g-1 cue (W8 1- Ty }
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and, using Lemma 3, we get an inclusion of Vl in a translate
*
of (W')", contradicting the assumption on r.
Keeping y fixed and varying x, we see by Eq. (1)

1

that V f\w§+ must contain at least one point, and hence

X
1t contains exactly one point.:
It is now easlly seen that we can find x, x’ e wl
and y & W8™1T such that D(a+x~y) = Q+D and D(a+x’-y) = Q’+D
where Q, Q' & Y and D is a positive divisor of degree g-1
on Y not containing Q or Q’. By Eq., (1), ¢(Q) - ¢(Q’) = x-x',
and hence Wl has two distinct points in common with some‘
translate of Vl. Now, if x, x’ € wl, then
w_i'lf“ w_ijl = w82 u»<w§;§,>* by Lemma 4, By Lemma 3
we now get an inclusion of some translate of Vg"2 in wg’2
or in (wg'g)*, whence, again by Lemma 3, we get an inclusion

*
of some translate of V& in wt l)

or (W”) . This completes
the proof.
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