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Some Terminology

A graph E = (E®, E', r,s) consists of a countable set E? of vertices, a
countable set E' of edges, and maps r,s : E! — EO identifying the range
and source of each edge.

A path e; ... e, is a sequence of edges with r(e;) = s(ej+1). A cycleis a
path with r(e,) = s(e1), and we call s(e;) the base point of this cycle.
A sink is a vertex that emits no edges; i.e., s 1(v) = 0. We write EQ_, _ for
the set of sinks.

An infinite emitter is a vertex that emits an infinite number of edges; i.e.,
s7(v) is infinite. We write E; for the set of infinite emitters.

A regular vertex is a vertex that emits a finite and nonzero number of

edges; i.e., 0 < [s7!(v)| < co. We write EQ, for the set of regular vertices.

We say a graph is row-finite if the graph has no infinite emitters.
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Definition

If E = (E° E',r,s) is a directed graph consisting of a countable set of
vertices E0, a countable set of edges E, and maps r,s : E} — E°
identifying the range and source of each edge, then C*(E) is defined to be
the universal C*-algebra generated by mutually orthogonal projections

{p, : v € E°} and partial isometries {s. : e € E'} with mutually
orthogonal ranges that satisfy

Q sise=pe) forallec E!
Qp = Z sess when 0 < |s71(v)] <
s(e)=

O ses; < pse) foralle€ E*'.

NOTE: At the beginning we'll restrict to the row-finite case.
NOTE: For row-finite graphs, (2) = (3).
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(1) Not only does the graph summarize the relations that the generators
satisfy, but also the C*-algebraic properties of C*(E) are encoded in the
graph E.

(2) Also, graph C*-algebras are fairly tractable. Their structure can be
deduced and their invariants can be computed.

(3) Graph C*-algebras include many C*-algebras.

Up to isomorphism, graph C*-algebras include:

@ All Cuntz algebras and all Cuntz-Krieger algebras

@ All finite-dimensional C*-algebras

e C(T), K(H), M,(C(T)), 7, and certain quantum algebras
Up to Morita Equivalence, graph C*-algebras include:

o All AF-algebras
@ All Kirchberg algebras with free Ki-group
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THE STANDARD GAUGE ACTION

By the universal property of C*(E), there exists an action
v : T — Aut C*(E) with

Yz(Se) = z5e and Yz(pv) = pv

for all e € E! and v € E°.

We say an ideal | <« C*(E) is gauge invariant if v,(I) C [ for all z € T.
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Two technical theorems:

Theorem (Gauge-Invariant Uniqueness)

Let E be a directed graph and let p : C*(E) — B be a x-homomorphism
between C*-algebras. Also let v denote the standard gauge action on
C*(E). If there exists an action 3 : T — Aut B such that 3,0p = po~,
for each z € T, and if p(p,) # 0 for all v € E°, then p is injective.

Definition: An exit for a cycle e; ... e, is an edge f with s(f) = s(e;) but
f # ej for some j.

Condition (L): Every cycle has an exit.

Theorem (Cuntz-Krieger Uniqueness)

Let E be a directed graph satisfying Condition (L) and let p: C*(E) — B
be a x-homomorphism between C*-algebras. If p(p,) # 0 for all v € E°,
then p is injective.
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Let E = (E®, E%, r,s) be a graph. A subset H C E° is hereditary if for any
e € E! we have s(e) € H implies r(e) € H. A hereditary subset H C E? is
said to be saturated if whenever v € EC is a regular vertex with

{r(e): e € E' and s(e) = v} C H, then v € H.

If H C EC is a hereditary set, the saturation of H is the smallest saturated
subset H of E° containing H.

Example

<

X

The set X = {v, w, z} is hereditary but not saturated. The set -
H = {v,w,y,z} is both saturated and hereditary. We see that X = H.

v
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Theorem
Let E = (E° E%, r,s) be row-finite.

I := ideal in C*(E) generated by {p, : v € H}

(a) Hw Iy is an isomorphism from the lattice of saturated hereditary
subsets of E onto the lattice of gauge-invariant ideals of C*(E).)

(b) If H is saturated hereditary, and we let E \ H be the subgraph of E
whose vertices are E® \ H and whose edges are E' \ r—*(H), then
C*(E)/Iy is isomorphic to C*(E \ H).

(c) If X is any hereditary subset of E°, then Ix = k. If we let Ex denote

the subgraph of E with vertices X and edges s~(X), then C*(Ex) is
isomorphic to the subalgebra

C*({se,py : e € s71(X) and v € X}),

and this subalgebra is a full corner of the ideal Ix.
July, 2010 8 /39




Example
Let E be the graph
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Example
Then the saturated hereditary subsets of E are

EO
i

~

{v,w}

|
0
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Example

and gauge-invariant ideals of C*(E) are

Igo = C*(E)
ltu,v,wy Iixv,wy

Itv.wy

Iy = {0}
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Example

Let E be the graph Q
N, 0
o °

Let H={v,w}. Then U

E\H Cfu En
()

V—Ww

O

Iy is Morita equivalent to C*(Ep).
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Note: For surjectivity of H — Iy, we need to apply the GIUT to E \ H. If
E \ H satisfies Condition (L) for all H, then we could instead use the
CKUT and show all ideals are gauge-invariant.

Definition

A simple cycle in a graph E is a cycle a = a3 ... a, with the property that
s(a;) # s(aq) for i € {2,3,...,n}.

Condition (K): No vertex in E is the base point of exactly one simple
cycle; that is, every vertex in E is either the base point of no cycles or of
more than one simple cycle.

The above graph satisfies Condition (K).
Note: Condition (K) implies Condition (L).
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Theorem

If E is a graph, then E satisfies Condition (K) if and only if for every
saturated hereditary subset H of E® the subgraph E \ H satisfies
Condition (L).

Theorem

A graph E satisfies Condition (K) if and only if all ideals of C*(E) are
gauge invariant.

(Note: In the earlier example we considered, the lattice of gauge-invariant
ideals that we described consists of all the ideals.)
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SIMPLICITY

Definition
For v, w € E° we write v > w if there exists a path o € E* with s(a) = v
and r(a) = w. In this case we say that v can reach w.

Definition
We say that a graph E is cofinal if for every v € E® and every infinite path
a € E™, there exists i € N for which v > s(;).
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Theorem

Let E be a row-finite graph with no sinks. Then C*(E) is simple if and
only if E satisfies Condition (L) and E is cofinal.
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A C*-algebra is an AF-algebra (AF stands for approximately
finite-dimensional) if it can be written as the closure of the increasing
union of finite-dimensional C*-algebras; or, equivalently, if it is the direct
limit of a sequence of finite-dimensional C*-algebras.

Theorem

(Kumjian, Pask, Raeburn) If E is a row-finite graph, then C*(E) is AF if
and only if E has no cycles.
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A simple C*-algebra A is purely infinite if every nonzero hereditary
subalgebra of A contains an infinite projection. (The definition of purely
infinite for non-simple C*-algebra is more complicated.)

Theorem

(Kumjian, Pask, and Raeburn) If E is a row-finite graph, then every
nonzero hereditary subalgebra of C*(E) contains an infinite projection if
and only if E satisfies Condition (L) and every vertex in E connects to a
cycle.
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THE DICHOTOMY

Theorem (The Dichotomy for Simple Graph Algebras)
Let E be a row-finite graph. If C*(E) is simple, then either
© C*(E) is an AF-algebra if E contains no cycles; or
@ C*(E) is purely infinite if E contains a cycle.
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NON-ROW-FINITE GRAPHS

Up until now all of our graphs have been row-finite. How do we deal with
arbitrary graphs?

We will use the notation

o

to indicate that there are a countably infinite number of edges from v to
w.
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In order to desingularize graphs, we will need to remove sinks and infinite
emitters.

Definition
If E is a graph and vy is a sink in E, then by adding a tail at vy we mean
attaching a graph of the form

V2 v3

~

Yo Vi

to E at v.
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Definition

If E is a graph and vy is an infinite emitter in E, then by adding a tail at
vp we mean performing the following process: We first list the edges
81,82,83, .. of s71(w). Then we add a graph of the form

€ [S)
Vo ! > V1 e V2 s V3 s

to E at vg, remove the edges in s71(v), and for every g; € s71(v) we
draw an edge f; from v;_; to r(gj).

Note: Desingularization is not unique.
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Example
Here is an example of a graph E and a desingularization F of E.
E w
‘(OO)
w
F Vo vi ) S 000
f f3
g fa
w
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Suppose E is the following graph:

\,/
w

Label the edges from vy to zp as {ga, g5, 86, --.}. Then a desingularization
of E is given by the following graph F.

\P N
/ %
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If E is the Oy graph shown here

(o0)

()

then a desingularization is given by:

C %) > V1 %) V3

> V4
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Theorem

Let E be a graph. If F is a desingularization of E and pgo is the projection
in M(C*(F)) defined by pgo := .o pv, then C*(E) is isomorphic to
the corner pgo C*(F)pgo, and this corner is full.

The advantage of the process of desingularization is that it is very
concrete, and it allows us to use the row-finite graph F to see how the
properties of C*(E) are reflected in the graph E. We will see examples of
this in the following, as we show how to extend results for C*-algebras of
row-finite graphs to general graph algebras.
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Theorem

Let E be a graph. The graph algebra C*(E) is an AF-algebra if and only if
E has no cycles.

v

Proof.
Let F be a desingularization of E. Then

C*(E) is AF < C*(F) is AF
<= F has no cycles
<= E has no cycles.
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Theorem

Let E be a graph. If E satisfies Condition (L) and every vertex in E
connects to a cycle in E, then there exists an infinite projection in every
nonzero hereditary subalgebra of C*(E).

Proof.
Let F be a desingularization of E. Then

E satisfies Condition (L) and every vertex
in E connects to a cycle
—F satisfies Condition (L) and every vertex
in F connects to a cycle
—>there is an infinite projection in every
nonzero hereditary subalgebra of C*(F)
=—there is an infinite projection in every
nonzero hereditary subalgebra of C*(E).

—
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Theorem

If E is a graph, then C*(E) is simple if and only if E has the following four
properties:

Q E satisfies Condition (L),
@ E is cofinal,
Q ifv,w € E® with v a sink, then w > v, and

Q ifv,w € E® with v an infinite emitter, then w > v.

Proof.
Let F be a desingularization of E. Then

C*(E) is simple
<= C*(F) is simple
<= F satisfies Condition (L) and is cofinal
<= E satisfies Condition (L), is cofinal, and each vertex

can reach every sink and every infinite emitter.
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Theorem (The Dichotomy for Simple Graph Algebras)
Let E be a graph. If C*(E) is simple, then either
© C*(E) is an AF-algebra if E contains no cycles; or
@ C*(E) is purely infinite if E contains a cycle.
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What about ideals when the graph is not row-finite?
Let E be a graph that satisfies Condition (K). Then

H +— Iy := the ideal generated by {p, : v € H}

is still injective, using the same proof as before.

However, it is no longer true that this map is surjective. The reason the
proof for row-finite graphs no longer works is that if / is an ideal, then

{se + 1, py + 1} will not necessarily be a Cuntz-Krieger E \ H-family for
the graph E \ H. (And, consequently, it is sometimes not true that
C*(E)/ln = C*(E \ H).)

To describe an ideal in C*(E) we will need a saturated hereditary subset
and one other piece of information. Loosely speaking, this additional piece
of information tells us how close {s. + I, p, + I} is to being a
Cuntz-Krieger E \ H-family.
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Given a saturated hereditary subset H C E®, we define the breaking
vertices of H to be the set
By := {v € E®: v is an infinite-emitter and

0<|s*(v)NrY(E°\ H)| < oo}
We see that By is the set of infinite-emitters that point to a finite number
of vertices not in H. Also, since H is hereditary, By is disjoint from H.
Fix a saturated hereditary subset H of E, and let S C By. Define

liH,s) = the ideal in C*(E) generated by

{py:vE H}U{p",’é Sy € S},

where
p",'(’) =Py — Z SeSa-
(e)=vo

r(e)¢H
Note that the definition of By ensures that the sum on the right is finite.
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Definition
We say that (H, S) is an admissible pair for E if H is a saturated

hereditary subset of vertices of E and S C By. We order admissible pairs
by defining (H,S) < (H',S’) ifand only if HC H' and SC H' U S'.

Let E be the graph
(o0) (o0)

14 w > X

N

Then the saturated hereditary subsets of E are

E° {w,x, v}, {x, ¥}, {r} {x},and 0.

Also B,y = {w}, and By = {) for all other H. The admissible pairs of E
are:

y

(E°,0), ({w,x,y},0), ({x.y},0),({y},0),
({3 Aw}), ({x3,0), (0. 0)
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These admissible pairs are ordered in the following way.

(E°,0)

({w,x,y},0)

/

({xx},0) ({x}; {w})

(1y).0) \ ({x},0)

0,0)
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Theorem

Let E be a graph. The map (H,S) — I s) is a lattice isomorphism from
admissible pairs for E onto the gauge-invariant ideals of C*(E). (When E
satisfies Condition (K) all ideals are gauge invariant, and this map is onto
the lattice of ideals of C*(E).

We'll sketch a proof of this using desingularization.

Lemma

Suppose A is a C*-algebra, p is a projection in the multiplier algebra
M(A), and pAp is a full corner of A. Then the map | — plp is an
order-preserving bijection from the ideals of A to the ideals of pAp.
Moreover, this map restricts to a bijection from gauge-invariant ideals of A
onto the gauge-invariant ideals of pAp.

v
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Let E be a graph and F a desingularization. Also let (H,S) be an
admissible pair for E.
We define

H:=HU{v, € F°: v, is on a tail added (1)
to a vertex in H} (2)

Now for each vy € S let N,, be the smallest nonnegative integer such that
r(f;) € H for all j > N,,.

Define
Ty := {Vn :v, is on the tail added (3)
to vo and n > N} (4)
and define 5
Hs = HU | Ty
weS
Lemma

The map (H,S) — Hs is an order-preserving bijection from the lattice of
admissible pairs of E onto the lattice of saturated hereditary subsets of F.
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Lemma
Let E be a graph and let F be a desingularization of E. Let pgo be the

projection in M(C*(F)) defined by pgo = o pv, and identify C*(E)

with pgo C*(F)pgo. If H is a saturated hereditary subset of E® and
S C By, then then
peolHspeo = lin.s).-

This shows that the following diagram commutes
(H,S)H’(H!S)

admissible pairs in E —— ideals in C*(E)

(H,S) plp

Hs I

sat. her. subsets of F — ideals in C*(F).
H—ly

and we have our result.

Mark Tomforde (University of Houston) Graph C*-algebras July, 2010

37 /39



The ideals /4 sy are precisely the gauge-invariant ideals in C*(E).
However, the quotient C*(E)/l(4,s) is not necessarily isomorphic to
C*(E \ H) because the collection {se + /1.5y, Pv + I(H,5)} may fail to
satisfy the third Cuntz-Krieger relation at breaking vertices for H.

Nonetheless, C*(E)/l,s) is isomorphic to C*(Fy s), where Fpy s is the
graph defined by

Fis = (EO\H)U{V : v € B4\S}
Fﬁl,s ={ec E': r(e) ¢ H}U{e :e€ E*, r(e) € By\S}

and r and s are extended by s(e’) = s(e) and r(e’) = r(e).
(Note: F(H,BH) = E\ H)
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Let E be the graph

(o0) (o)
v w X

N

y

Let (H,S) = ({x},0). (Note: By,y = {w}.)
Then F(y s) is the graph

V———————— W

=) \

and C*(E)/ln.5) = C*(Fius))-

Mark Tomforde (University of Houston) Graph C*-algebras

y

July, 2010

39 / 39



