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Abstract

We examine a certain interval map, called the weather map, that has
been used by previous authors as a toy model for weather forecasting. We
prove that the weather map is topologically mixing and satisfies Devaney’s
definition of chaos.

1 Introduction

In the subject of dynamical systems there has been a great deal of progress
developing abstract theories that describe the behavior of systems satisfying
certain hypotheses, but relatively less development establishing that various
systems satisfy these hypotheses. As a result, in recent years there has been
a great deal of interest in examining particular examples of dynamical systems
and determining their properties.

An example that has attracted recent attention is a “Toy Forecast Model”
described in an article by Sadowski in the December 2012 issue of the American
Mathematical Monthly [7]. This model involves a function f : [0, 2] → [0, 2]
defined by

f(x) =

{
x+ 1 if 0 ≤ x ≤ 1

4− 2x if 1 < x ≤ 2
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and we shall refer to f as the weather map. The weather map was designed to
give a simplified example describing how weather can change from one day to
the next: a sunny day is labeled 0, a cloudy day is labeled 1, and a rainy day
is labeled 2. A number x ∈ [0, 2] is considered as a position on this spectrum
of sunny to rainy, and if x denotes today’s weather, then the weather for the
following days is given by the sequence f(x), f2(x), f3(x), . . ., where we define
fk+1(x) := f(fk(x)) for k ≥ 1. Such a model is, of course, not realistic, but
instead meant to provide a simplified deterministic model that can mimic sud-
den changes, similar to the changes that occur with daily weather. One can
see that x = 0 is periodic, with f(0) = 1, f(1) = 2, and f(2) = 0. In his
analysis in [7], Sadowski observed that when the initial weather is a dyadic
rational; i.e., x = a/2n ∈ [0, 2] for a ∈ N, then the weather would eventually
be equal to one of the values in {0, 1, 2}, and he colored the point x white,
grey, or black, depending on whether the first integer value obtained by fk(x)
was 0, 1, or 2, respectively. Sadowski showed that for every n ∈ N the numbers
0/2n, 1/2n, 2/2n, . . . , 2n+1/2n are colored in such a way that every three consec-
utive terms are of three different colors. This shows that the weather function
exhibits a sensitive dependence on initial conditions: it is possible to have days
of arbitrarily close weather that on some day in the future will produce days of
drastically different weather.

Our objective in this article is to provide a proof that the weather map
is topologically mixing and chaotic. While there is no universally accepted
definition of chaos, one very popular definition is due to Devaney. A map f :
X → X is chaotic in Devaney’s definition if all of the following three properties
hold: (1) f is topologically transitive, (2) the periodic points of f are dense in
X, and (3) f has sensitive dependence on initial conditions. It is known that in
many situations these conditions are not independent: If f is continuous and if
X is a metric space with no isolated points, then we have ((1) + (2)) =⇒ (3),
and if X is an interval of R, then we have topologically mixing =⇒ (1) =⇒
((2) + (3)). Thus in many situations, one only needs to establish a subset of the
desired properties.

Our inverstigation of the weather map requires a careful consideration of
cases: while the weather map is expanding on [1, 2], it is isometric on [0, 1],
and hence one must do a careful analysis of how the weather maps causes the
intervals [0, 1] and [1, 2] to interact. After we show that the weather map is
topologically mixing, we apply well-known results to conclude that the weather
map satisfies all three conditions of Devaney’s definition of chaos.

2 Preliminary Definitions and Notation

We denote the real numbers by R, the natural numbers by N, and mention that
N = {1, 2, . . .}; so, in particular, 0 is not a natural number. We use the term
interval to mean a subset of the real numbers with the property that for any
two real numbers in the set all numbers between these two numbers are also in
the set. (This property is also sometimes called “convex”.) Note that intervals
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of the real numbers need not be open, closed, or finite; e.g., [1, 2], [3, 7), (0, 1),
and [5,∞) are all examples of intervals.

If X is a set and f : X → X, then we define f0 : X → X to be the
identity function on X, and for any k ∈ N we define fk : X → X recursively by
fk := f ◦fk−1. Note that f1 = f , and fk is the k-fold composition of f . For any
k ∈ N and any subset S ⊆ X, we also define f−k(S) = {x ∈ X : fk(x) ∈ S}.

Definition 1. Let X be a topological space and let f : X → X be a function.
We say that x ∈ X is periodic if fk(x) = x for some k ∈ N. In this case we say
x has period k, and the smallest value of k ∈ N for which fk(x) = x is called
the least period of x.

Definition 2. If X is a topological space and f : X → X is a function, we say
f is topologically transitive if whenever U and V are nonempty open subsets of
X, there exists n ∈ N such that fn(U) ∩ V 6= ∅

Definition 3. If X is a topological space and f : X → X is a function, we say
f is topologically mixing if whenever U and V are nonempty open subsets of
X, there exists a N ∈ N such that fn(U) ∩ V 6= ∅ for all n ≥ N .

Remark 1. It follows immediately from the definitions that topologically mixing
implies topologically transitive. However, the converse does not hold: an irra-
tional rotation of the circle is topologically transitive (the orbit of a small open
interval will eventually intersect any other small open interval), but not topolog-
ically mixing (a rotating small interval will typically leave another interval for
a while before returning).

Definition 4. If (X, d) is a metric space and f : X → X, we say f is sensitive
to initial conditions if there exists a δ > 0 such that, for any x ∈ X and
any open set U containing x, there exists a y ∈ U and an n ≥ 0 such that
d(fn(x), fn(y)) > δ.

Definition 5 (Devaney’s Definition of Chaos [4]). Let (X, d) be a metric space.
We say a function f : X → X is chaotic (or exhibits chaos) if the following
three conditions are satisfied:

(1) f is topologically transitive,

(2) the periodic points of f are dense in X, and

(3) f has sensitive dependence on initial conditions.

In many situations these three conditions are not independent, and we examine
the relationships among them in the next section.

3 Relationships among the conditions in Devaney’s
Definition

In this section we give a short description of the relationships among topo-
logically mixing and the three properties of Devaney’s definition, emphasizing
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various hypotheses under which one condition of Definition 5 will follow from
others. We use the same numbering of properties as in Definition 5 for our
notation.

It follows from the definitions that we always have the implication

topologically mixing =⇒ (1)

and the example of irrational rotation of the circle shows the converse implica-
tion does not hold. The following two propositions describe situations in which
we have additional implications.

Banks, Brooks, Cairns, Davis, and Stacey proved the following proposition
in [1].

Proposition 1. Let (X, d) be a metric space with no isolated points, and let
f : X → X be a continuous function. If f is topologically transitive and the set
of periodic points of f is dense in X, then f has sensitive dependence on initial
conditions.

The next proposition was first proven by Block and Coppel [3, Lemma 41 of
Chapter IV.5]. However, a highly simplified proof was given by Vellekoop and
Berglund in [8], and Vellekoop and Berglund’s proof was adapted slightly in [5,
Theorem 3.6].

Proposition 2. Let I be an interval of R, and let f : I → I be continuous. If
f is transitive, then the set of periodic points of f is dense in I.

Proposition 1 and Proposition 2 describe two important situations in which we
have implications: metric spaces with no isolated point and intervals of real
numbers. We summarize the consequences of these propositions in the next two
remarks.

Remark 2 (Metric Spaces with No Isolated Points). If f : X → X is continuous
and X is a metric space with no isolated points, Proposition 1 shows

((1) and (2)) =⇒ (3).

Remark 3 (Intervals of the Real Numbers). If f : I → I is continuous and I
is an interval of R, then Proposition 1 and Proposition 2 show

topologically mixing =⇒ (1) =⇒ ((2) and (3)).

Remark 4 (Counterexamples). The following four examples show the converse
of the implications in Remark 2 and Remark 3 do not hold.

• Example 1: The identity function id : I → I is a continuous function on
an interval that satisfies (2) but not (3)

• Example 2: [8, p.355] gives an example of a continuous function f : I → I
on an interval that satisfies (3) but not (2).
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• Example 3: [8, p.354] gives an example of a continuous function f : I → I
on an interval that satisfies (2) and (3), but not (1).

• Example 4: It is shown in [6, Theorem 6.1.2] that if I is a closed bounded
interval, then f : I → I is topologically mixing if and only if f2 : I → I
is topologically transitive. The function described in [2, Example 3] is
a continuous function f : I → I on an closed bounded interval I such
that f is topologically transitive, but f2 is not topologically transitive. In
particular, f is topologically transitive, but not topologically mixing.

Example 2 and Example 3 show that the converse of implication in Remark 2
does not hold, and moreover, that even when f is a continuous map on an
interval, (3) implies neither (2) nor (1). Example 3 shows that the converse
of the second implication in Remark 3 does not hold, and moreover, Example 1
and Example 2 show that neither of (2) and (3) implies the other in this case.
Finally, Example 4 shows that even when f is a continuous map on an interval,
(1) does not imply topological mixing.

4 The Weather Map is Topologically Mixing and
Chaotic

Our goal in this section is to show the weather map is topologically mixing and
satisfies Devaney’s definition of chaos.

Definition 6. For an interval I ⊆ R, let m(I) denote the Lebesgue measure
(i.e., length) of I. In particular, if I is a finite interval, then m(I) is equal to
the difference of the right endpoint minus the left endpoint of I. Hence

m((a, b)) = m([a, b]) = m((a, b]) = m([a, b)) = b− a.

Lemma 1. Let f : [0, 2] → [0, 2] be the weather map, and let I ⊆ [0, 2] be an
interval. Then fn(I) is an interval for all n ∈ N, and there exists N ∈ N such
that m(fN (I)) ≥ min{2m(I), 2}. Moreover, we can always choose N ≤ 4.

Proof: Since the weather map f is continuous, fn is continuous for all
n ∈ N, and hence by the intermediate value theorem fn takes connected sets to
connected sets. Thus fn(I) is an interval for any interval I ⊆ [0, 2].

Let I be an interval, and suppose that a is the left endpoint of I and b is
the right endpoint of I. Then m(I) = b− a. Consider three cases.
Case I: b ≤ 1.

In this case I ⊆ [0, 1], and since f(x) = x + 1 for all x ∈ I, it follows that
f(I) is an interval with left endpoint a + 1 and right endpoint b + 1. Thus
f(I) ⊆ [1, 2]. Since f(x) = 4 − 2x for all x ∈ [1, 2], f2(I) = f(f(I)) is an
interval with left endpoint 2− 2b and right endpoint 2− 2a. Thus

m(f2(I)) = (2− 2a)− (2− 2b) = 2b− 2a = 2(b− a) = 2m(I) ≥ min{2m(I), 2}
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and the claim holds with N := 2.

Case II: 1 ≤ a.
In this case I ⊆ [1, 2], and since f(x) = 4 − 2x for all x ∈ [1, 2], f(I)) is an

interval with left endpoint 4− 2b and right endpoint 4− 2a. Thus

m(f(I)) = (4− 2a)− (4− 2b) = 2b− 2a = 2(b− a) = 2m(I) ≥ min{2m(I), 2}

and the claim holds with N := 2.

Case III: a ≤ 1 and 1 ≤ b.
Since m(I) = b−a = (b−1)+(1−a), either b−1 ≥ m(I)/2 or 1−a ≥ m(I)/2.

Consider the following three subcases.

Subcase III(i): b− 1 ≥ m(I)/2.
Since b ≥ 1 and f(x) = 4−2x for all x ≥ 1, we see that f([1, b)) = (4−2b, 2].

If 4−2b < 1, then f(4−2b, 2] = [0, 2]. If 4−2b ≥ 1, then it follows from Case II
that

m(f2(4− 2b, 2]) ≥ min{2m((4− 2b, 2]), 2} = min{4b− 4, 2}.
Thus in either situation, we have

m(f2(4− 2b, 2]) ≥ min{4b− 4, 2} = min{4(b− 1), 2}
≥ min{4(m(I)/2), 2} = min{2m(I), 2}

Hence

m(f3(I)) ≤ m(f3([1, b)) = m(f2((4− 2b, 2])) ≥ min{2m(I), 2}

and the claim holds with N := 3.

Subcase III(ii): 1− a ≥ m(I)/2 and 2− 2a > 1.
Since a ≤ 1 and f(x) = x+1 for all x ≤ 1, we have f((a, 1]) = (a+1, 2] with

a + 1 ≥ 1. Since f(x) = 4 − 2x for all x ≥ 1, we have f2((a, 1]) = [0, 2 − 2a).
Because 2− 2a ≥ 1 in this case, it follows that [0, 1] ⊆ f2((a, 1]) and hence

[0, 2] = f([1, 2]) = f2([0, 1]) ⊆ f2(f2(a, 1])) = f4((a, 1]) ⊆ f4(I)

so that
m(f4(I)) ≥ m([0, 2]) = 2 ≥ min{2m(I), 2}

and the claim holds with N := 4.

Subcase III(iii): 1− a ≥ m(I)/2 and 2− 2a < 1.
Since a ≤ 1 and f(x) = x+1 for all x ≤ 1, we have f((a, 1]) = (a+1, 2] with

a + 1 ≥ 1. Since f(x) = 4 − 2x for all x ≥ 1, we have f2((a, 1]) = [0, 2 − 2a).
Because 2− 2a ≤ 1 in this case, it follows from Case I that m(f2([0, 2− 2a))) ≥
min{2m([0, 2− 2a)), 2} = min{4− 4a, 2}. Hence

m(f4(I)) ≥ m(f4((a, 1])) = m(f2(f2((a, 1]))) = m(f2([0, 2− 2a)))

≥ min{4− 4a, 2} = 4− 4a = 4(1− a) ≥ 4(m(I)/2)

= 2m(I) ≥ min{2m(I), 2}

and the claim holds with N := 4. QED
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Lemma 2. Let f : [0, 2] → [0, 2] be the weather map, and let I ⊆ [0, 2] be an
interval. Then fn(I) is an interval for all n ∈ N, and for every M ∈ N there
exists N ∈ N such that m(fN (I)) ≥ min{2Mm(I), 2}. Moreover, we can always
choose N ≤ 4M .

Proof: We proceed by induction on M . If M = 1, the result follows from
Lemma 1. For the inductive step, let M ∈ N and suppose the claim holds
for M − 1. Then there exists N ′ ∈ N with m(fN

′
(I)) ≥ min{2M−1m(I), 2}

and N ′ ≤ 4(M − 1). Applying Lemma 1 to the interval fN
′
(I), there exists

N ′′ ∈ N with m(fN
′′
(fN

′
(I))) ≥ min{2 · 2M−1m(I), 2} and N ′′ ≤ 4. If we let

N := N ′+N ′′, then m(fN (I)) ≥ min{2 · 2M−1m(I), 2} = min{2Mm(I), 2} and
N = N ′ +N ′′ ≤ 4(M − 1) + 4 = 4M . QED

Lemma 3. If U is a nonempty open subset of [0, 2], and m := m(U), then there
exists N ∈ N such that (0, 2) ⊆ fN (U). Moreover, if U contains an interval I
with m(I) > 0, then we may choose N ≤ 4 log2(2/m(I)) + 4.

Proof: Since U is a nonempty open subset, then exists a nonempty open
interval I = (a, b) with I ⊆ U . Since m(I) > 0, we may choose a natural number
M such that log2(2/m(I)) ≤M < log2(2/m(I)) + 1. By Lemma 2 there exists
N ≤ 4M such that fN (I) is an interval and m(fN (I)) ≥ min{2Mm(I), 2}.
However,

2Mm(I) ≥ 2log2(2/m(I))m(I) = (2/m(I))m(I) = 2

so m(fN (I)) = 2. Since fN (I) is an interval contained in [0, 2] with length 2,
it follows that (0, 2) ⊆ fN (I). Since I ⊆ U , we have (0, 2) ⊆ fN (I) ⊆ fN (U).
Moreover, N ≤ 4M < 4(log2(2/m(I)) + 1) = 4 log2(2/m(I)) + 4. QED

Theorem 5. If f : [0, 2] → [0, 2] is the weather map, then f is topologically
mixing and f satisfies the three properties in Devaney’s definition of chaos (see
Definition 5).

Proof: If U is a nonempty open set, it follows from Lemma 3 that there
exists N ∈ N such that (0, 2) ⊆ fN (U). Thus (0, 2) ⊆ fn(U) for all n ≥ N ,
and fn(U) intersects every nonempty open subset of [0, 2] nontrivially. Thus
f is topologically mixing. It follows that f is also topologically transitive, and
Proposition 1 and Proposition 2 imply that f satisfies the three properties in
Devaney’s definition of chaos (cf. Remark 3). QED
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