
THE STRUCTURE OF GRAPH C*-ALGEBRAS AND
THEIR GENERALIZATIONS

MARK TOMFORDE

These notes are an expanded version of the material covered by the author
in his four talks at the Graph Algebra Workshop in Málaga, Spain during
July 3–8, 2006. These four talks were given on Tuesday, July 4 following
Iain Raeburn’s lectures on Monday, and throughout these notes we will
assume familiarity with some of the basic material he covered (much of
which can be found in Chapters 1 and 2 of [34]). Our goal in these notes
is to provide self-contained proofs of some of the results concerning ideal
structure of graph algebras, and also to survey certain additional topics
such as desingularization, K-theory and its applications to classifying C∗-
algebras, and various generalizations of graph algebras.

In these notes we will follow the convention of having the partial isome-
tries in a graph algebra go in a direction opposite the edge (so the source
projection of se is pr(e) and the range projection of se is dominated by ps(e)).
This is the convention used in most of the graph C∗-algebra literature. How-
ever, it is not the convention recently adopted by Raeburn in his notes from
this workshop and in his book [34]. Nonetheless, the author feels there are
several good reasons for breaking from the convention used by Raeburn and
instead have the edges go the “classic” direction. In the author’s opinion,
much of the notation and many results in the subject take a more natural
form when one has the edges going this way; and furthermore, much of the
notation agrees with notation and conventions from other subjects. A few
examples are:

(1) With our convention, graph properties are often stated in terms of
traversing paths forward and being able to reach certain vertices.
For example: cofinality means that any vertex can reach any infinite
path by following edges forward; we will frequently talk of vertices
being able to reach loops by following edges forward; and a set H
is said to be hereditary if, when following edges forward, once one
enters H one stays in H. If one uses the alternate convention, one
must instead rephrase all these results in terms of “inverse reaching”
or following directed edges backwards.
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(2) When we write a path e1 . . . en we have r(ei) = s(ei+1), so that the
path traverses edges in the same way one reads them: from left to
right. Also the source of this path is s(e1) and the range is r(en), and
when we speak of infinite paths they are of the form e1 . . . starting
at s(e1). If one uses the alternate convention, then a path e1 . . . en
has source s(en) and range r(e1) and one traverses the path from
right to left. Also, in the alternate convention infinite paths are of
the form e1e2 . . . ending at r(e1).

(3) If we want to realize the AF-algebra with Bratteli diagram E as a
full corner of the graph algebra C∗(E), then our convention agrees
with the conventions used in Bratteli diagrams. With the alternate
convention, one has to reverse the edges of the Bratteli diagram.
(See [34, p.20–21] for more details.)

(4) Our convention agrees with the conventions used in Leavitt Path
Algebras (which are based off of graph conventions in Algebra). In
particular, with our convention, the partial isometries satisfy the
same relations as the generators of the Leavitt Path Algebra. Since
Leavitt Path Algebras have a great deal in common with graph C∗-
algebras, this allows one to more easily compare results for the two
objects.

(5) With our convention, if A is the vertex matrix of a graph then
A(v, w) is the number of edges from v to w. Again, this agrees
with reading from left to right, and it also agrees with the conven-
tion used in graph theory. If one uses the alternate convention, then
A(v, w) is the number of edges from w to v, which forces one to
read from right to left, and does not agree with the matrix used by
graph theorists. Similarly for the edge matrix B; in our convention
B(e, f) = 1 if and only if r(e) = s(f). In the alternate convention,
B(e, f) = 1 if and only if r(f) = s(e).

(6) In most of the literature — particularly in many of the seminal
papers on graph C∗-algebras — our convention has been used. If one
is first learning the subject, or if one needs to refer to these papers
frequently, it is much easier to use this convention. Of course, one
can always argue that a person simply needs to “reverse the edges”
when reading these papers. But, this is often trickier than it sounds,
and the author (who tends to be right/left challenged himself at
times) wants to make the literature and its results as accessible as
possible to the non-expert.

Remark. While we use the conventions that our partial isometries go in a
direction opposite our edges, it is certainly true that for higher-rank graphs it
is useful to have the partial isometries go in the same direction as the edges.
This is because it is more natural categorically; in fact, in (2) above one
sees that edges in a path are “composed” in the same way as morphisms
— from right to left. However, despite the fact that ordinary graphs are
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rank 1 graphs, it does not seem that this is sufficient reason for using the
higher-rank graph convention in this setting. (Regardless of what those
working in higher rank graphs may tell you!) Because these categorical
considerations are less important in the rank 1 graph setting, and because
many of the advantages of using the higher rank convention disappear or
become marginal in this special case, it seems that in light of the reasons in
(1)–(6) above it makes sense to have separate conventions for higher rank
graphs and for ordinary directed graphs.

We now establish some notation and terminology that we shall use fre-
quently. A directed graph E = (E0, E1, r, s) consists of a countable set E0

of vertices, a countable set E1 of edges, and maps r, s : E1 → E0 identifying
the range and source of each edge. Since all our graphs will be directed, we
will often simply call a directed graph a “graph”. A vertex v ∈ E0 is called
a sink if |s−1(v)| = 0, and v is called an infinite emitter if |s−1(v)| = ∞. If
v is either a sink or an infinite emitter, then we call v a singular vertex. If
v is neither a sink nor an infinite emitter, then we say v is a regular vertex.
A graph is said to be row-finite if it has no infinite emitters. (Note that
row-finite graphs are allowed to have sinks.)

If E is a graph we define a Cuntz-Krieger E-family to be a set of mutually
orthogonal projections {pv : v ∈ E0} and a set of partial isometries {se : e ∈
E1} with orthogonal ranges which satisfy the Cuntz-Krieger relations:

(1) s∗ese = pr(e) for every e ∈ E1;
(2) ses∗e ≤ ps(e) for every e ∈ E1;
(3) pv =

∑
s(e)=v ses

∗
e for every v ∈ G0 with 0 < |s−1(v)| <∞.

The graph C∗-algebra C∗(E) is defined to be the C∗-algebra generated by
a universal Cuntz-Krieger E-family. We sometimes refer to the graph C∗-
algebra as simply the graph algebra.

A path in E is a sequence of edges α = α1α2 . . . αn with r(αi) = s(αi+1)
for 1 ≤ i < n, and we say that α has length |α| = n. We let En denote
the set of all paths of length n, and we let E∗ :=

⋃∞
n=0E

n denote the set of
finite paths in E. Note that vertices are considered paths of length zero. The
maps r and s extend to E∗, and for v, w ∈ G0 we write v ≥ w if there exists a
path α ∈ E∗ with s(α) = v and r(α) = w. It is a consequence of the Cuntz-
Krieger relations that C∗(E) = span{sαs∗β : α, β ∈ E∗ and r(α) = r(β)}.

We say that a path α := α1 . . . αn of length 1 or greater is a loop if
r(α) = s(α), and we call the vertex s(α) = r(α) the base point of the
loop. An exit for a loop α1 . . . αn is an edge f ∈ E1 with the property that
s(f) = s(αi) but αi 6= f from some i ∈ {1, . . . n}. We say that a graph
satisfies Condition (L) if every loop in the graph has an exit.

By an ideal in a C∗-algebra A we will mean a closed, two-sided ideal in
A. If E is a graph, then by the universal property of C∗(E) there exists a
gauge action γ : T → AutC∗(E) with the property that γz(pv) = pv and
γz(se) = zse for all z ∈ T. If γ : T → AutA is this gauge action, then we
say an ideal I in A is gauge-invariant if γz(a) ∈ I for all a ∈ I and z ∈ T.
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1. Simplicity and Ideal Structure

In this section we shall use the uniqueness theorems to analyze the struc-
ture of ideals in a graph C∗-algebra and give conditions for simplicity.

Theorem 1.1 (Gauge-Invariant Uniqueness Theorem). Let E = (E0, E1, r, s)
be a directed graph and let ρ : C∗(E) → B be a ∗-homomorphism from C∗(E)
into a C∗-algebra B. Also let γ denote the standard gauge action on C∗(E).
If there exists an action β : T → AutB such that βz ◦ ρ = ρ ◦ γz for each
z ∈ T, and if ρ(pv) 6= 0 for all v ∈ E0, then ρ is injective.

Note that the condition βz◦ρ = ρ◦γz for each z ∈ T is sometimes summarized
by saying that ρ is equivariant for the gauge actions β and γ.

Theorem 1.2 (Cuntz-Krieger Uniqueness Theorem). Let E = (E0, E1, r, s)
be a directed graph satisfying Condition (L) and let ρ : C∗(E) → B be a ∗-
homomorphism from C∗(E) into a C∗-algebra B. If ρ(pv) 6= 0 for all v ∈ E0,
then ρ is injective.

Although both of these uniqueness theorems hold for arbitrary graphs,
to simplify our analysis in this section we shall only consider C∗-algebras
of row-finite graphs. We will discuss the general (non-row-finite) case in
Section 2

Our analysis in this section will proceed in the following stages:

• First, we will use the Gauge-Invariant Uniqueness Theorem to clas-
sify the gauge-invariant ideals of C∗(E). This will consist of showing
the following three facts:
(1) The gauge-invariant ideals of C∗(E) correspond to saturated

hereditary subsets of vertices of E0.
(2) If IH is the gauge-invariant ideal corresponding to the saturated

hereditary subset H, then IH is Morita equivalent to the C∗-
algebra of the subgraph of E whose vertices are H and whose
edges are the edges of E whose source is a vertex in H.

(3) If IH is the gauge-invariant ideal corresponding to the saturated
hereditary subset H, then the quotient C∗(E)/IH is isomorphic
to the C∗-algebra of the subgraph of E whose vertices are E0\H
and whose edges are the edges of E whose range is a vertex in
E0 \H.

• Next we shall derive a condition, called Condition (K), which is
equivalent to having all ideals of C∗(E) be gauge-invariant. Our
classification of gauge-invariant ideals then gives a complete descrip-
tion of the ideals of a C∗-algebra associated to a graph satisfying
Condition (K).

• Finally we shall obtain conditions for C∗(E) to be simple. We will
give various equivalent forms for these conditions.

As we work to prove these facts we will use the following definitions.
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Definition 1.3. Let E = (E0, E1, r, s) be a graph. A subset H ⊆ E0 is
hereditary if for any e ∈ E1 we have s(e) ∈ H implies r(e) ∈ H. A hereditary
subset H ⊆ E0 is said to be saturated if whenever v ∈ E0 is a regular vertex
with {r(e) : e ∈ E1 and s(e) = v} ⊆ H, then v ∈ H. If H ⊆ E0 is a
hereditary set, the saturation of H is the smallest saturated subset H of E0

containing H.

Roughly speaking, a subset of vertices is hereditary if no vertex in H
points outside of H. This set H is also saturated if whenever a regular
vertex points only into H then that vertex is in H.

Example 1.4. In the graph

u

��

// v //

��

w

x y

OO

// z

OOWW

the set X = {v, w, z} is hereditary but not saturated. However, the set
H = {v, w, y, z} is both saturated and hereditary. We see that X = H.

For any graph, the saturated hereditary subsets of vertices form a lattice
with the ordering given by set inclusion, the infimum given by H1 ∧H2 :=
H1 ∩H2, and the supremum given by H1 ∨H2 := H1 ∪H2.

Definition 1.5. For v, w ∈ E0 we write v ≥ w if there exists a path α ∈ E∗

with s(α) = v and r(α) = w. In this case we say that v can reach w.

Note that of H is a hereditary subset and v ≥ w with v ∈ H, then w ∈ H.

1.1. Classification of Gauge-Invariant Ideals. We wish to prove the
following theorem. Our approach will be similar to the proof of [2, Theo-
rem 4.1].

Theorem 1.6. Let E = (E0, E1, r, s) be a row-finite graph. For each subset
H ⊆ E0 let IH denote the ideal in C∗(E) generated by {pv : v ∈ H}.

(a) The map H 7→ IH is an isomorphism from the lattice of saturated
hereditary subsets of E onto the lattice of gauge-invariant ideals of
C∗(E).

(b) If H is a saturated hereditary subset of E0, and we let E \ H be
the subgraph of E whose vertices are E0 \ H and whose edges are
E1\r−1(H), then C∗(E)/IH is canonically isomorphic to C∗(E\H).

(c) If X is any hereditary subset of E0, then IX = IX . Furthermore, if
we let EX denote the subgraph of E whose vertices are X and whose
edges are s−1(X), then C∗(EX) is canonically isomorphic to the sub-
algebra C∗({se, pv : e ∈ s−1(X) and v ∈ X}), and this subalgebra is
a full corner of the ideal IX .

Remark 1.7. Observe that in (b) the fact that H is hereditary implies that
if e ∈ E1 \ r−1(H), then s(e) ∈ E0 \H. Likewise in (c) the fact that X is
hereditary implies that if e ∈ s−1(X), then r(e) ∈ X.



6 MARK TOMFORDE

Example 1.8. If E is the graph

u
��

MM

  
@@

@@
@@

@

v // w // x
��

ZZ

y
XX

��

??�������

then the saturated hereditary subsets of E are: ∅, {v, w, x}, {u, v, w, x},
{v, w, x, y}, and E0 = {u, v, w, x, y}. When these subsets are ordered by
inclusion we have the following lattice

E0

NNNNNNNNNNNN

pppppppppppp

{u, v, w, x}

NNNNNNNNNNN
{v, w, x, y}

ppppppppppp

{v, w, x}

∅

and by Part (a) of Theorem 1.6 the lattice of gauge-invariant ideals in C∗(E)
is

IE0 = C∗(E)

OOOOOOOOOOO

ooooooooooo

I{u,v,w,x}

OOOOOOOOOOO
I{v,w,x,y}

ppppppppppp

I{v,w,x}

I∅ = {0}

Hence C∗(E) has three proper nontrivial gauge-invariant ideals. If we let
H = {v, w, x}, then E \H and EH are the following graphs
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E \H u
��

MM

y
XX

��

EH

v // w // x
��

ZZ

and by Parts (b) and (c) of Theorem 1.6 we have C∗(E)/IH ∼= C∗(E \H) ∼=
O2 ⊕O2 and C∗(EH) is a full corner (and hence Morita equivalent) to IH .

In addition, if we let X = {x}, then X is hereditary (but not saturated)
and X = H. We see that the graph EX is

EX x
��

ZZ

Part (c) of Theorem 1.6 tells us that C∗(EX) ∼= O2 is also a full corner of
the ideal IX = IX = IH . Thus C∗(EH) and C∗(EX) are Morita equivalent.
However, the C∗-algebras C∗(EH) and C∗(EX) are not isomorphic — with
a little bit of work one can show that C∗(EH) ∼= M3(O2).

Before we can provide a proof of Theorem 1.6 we will need a few lemmas.

Lemma 1.9. Let E be a graph, and let I be an ideal in C∗(E). Then
H := {v ∈ E0 : pv ∈ I} is a saturated hereditary subset of E0.

Proof. Suppose e ∈ E1 with s(e) ∈ H. Then ps(e) ∈ I, and because I is
an ideal we have pr(e) = s∗ese = s∗eps(e)se ∈ I. Hence r(e) ∈ H and H is
hereditary.

Next suppose v ∈ E0 is a regular vertex and {r(e) : e ∈ E1 and s(e) =
v} ⊆ H. Then pr(e) ∈ I for every e ∈ s−1(v), and since I is an ideal
ses

∗
e = sepr(e)s

∗
e ∈ I for every e ∈ s−1(v). Because v is a regular vertex we

have that pv =
∑

s(e)=v ses
∗
e ∈ I. Thus v ∈ H and H is saturated. �

Remark 1.10. Notice that in order to prove H is saturated in the above
lemma, we needed to have the relation pv =

∑
s(e)=v ses

∗
e. This is why the

definition of saturated only requires that {r(e) : e ∈ E1 and s(e) = v} ⊆ H
implies v ∈ H when v is a regular vertex.

Lemma 1.11. Let E be a graph, and let X be a hereditary subset of E0.
Then

(1.1) IX = span{sαs∗β : α, β ∈ E∗ and r(α) = r(β) ∈ X}.

In particular, this implies that IX = IX and that IX is gauge invariant.
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Proof. We first note that it follows from Lemma 1.9 that {v ∈ E0 : pv ∈ IX}
is a saturated set containing X, and thus containing X. Thus the right hand
side of (1.1) is contained in IX . Furthermore, any non-zero product of the
form (sαs∗β)(sγs

∗
δ) collapses to a term of the form sµs

∗
ν , and by examining

the various possibilities µ and ν, and using the hereditary property of X we
deduce that the right hand side of (1.1) is an ideal. Since the right hand
side of (1.1) contains the generators of IX , the equality in (1.1) holds. �

Lemma 1.12. Let E be a graph and let H be a saturated hereditary subset
of E0. If IH is the ideal in C∗(E) generated by {pv : v ∈ H}, then {v ∈ E0 :
pv ∈ IH} = H.

Proof. We trivially have that v ∈ H implies pv ∈ IH , so H ⊆ {v ∈ E0 :
pv ∈ IH}. For the reverse inclusion, choose a Cuntz-Krieger (E \H)-family
{Se, Pv : e ∈ (E \ H)1, v ∈ (E \ H)0} that generates C∗(E \ H). We may
extend this to a Cuntz-Krieger E-family by setting Pv = 0 when v ∈ H and
Se = 0 when r(e) ∈ H. To see that this is a Cuntz-Krieger E-family notice
that H hereditary implies the Cuntz-Krieger relations holds at vertices in
H, and H saturated implies there are no vertices in (E \H)0 = E0 \H at
which a new Cuntz-Krieger relation is being imposed (in other words, all
sinks of E \H are sinks in E). The universal property of C∗(E) then gives
a homomorphism ρ : C∗(E) → C∗({Se, Pv}) which vanishes on IH since it
kills all the generators {pv : v ∈ H}. But ρ(pv) = Pv 6= 0 for v /∈ H, so
v /∈ H implies pv /∈ IH . Thus {v ∈ E0 : pv ∈ IH} ⊆ H. �

Lemma 1.13. Let E be a graph and let X be any subset of E0. Then there
exists a projection pX ∈M(C∗(E)) such that

pXsαs
∗
β =

{
sαs

∗
β if s(α) ∈ X

0 if s(α) /∈ X
.

Proof. If X is finite, then the projection pX :=
∑

v∈X pv has the required
properties. Therefore, we need only consider the case when X is infinite. If
X is infinite list the elements of X as X = {v1, v2, . . .}. For each N ∈ N let
pN :=

∑N
n=1 pvn . Then

pNsαs
∗
β =

{
sαs

∗
β if s(α) = vn for some n ≤ N

0 otherwise.

Thus for any a ∈ span{sαs∗β : α, β ∈ E∗ and r(α) = r(β)}, the sequence
{pNa}∞N=1 is eventually constant. An ε/3 argument then shows that {pNa}∞N=1
is Cauchy for every a ∈ C∗(E). Thus we may define p : A → A by
p(a) = lim

N→∞
pNa. Since

〈b, p(a)〉 = b∗p(a) = lim
N→∞

pNa = lim
N→∞

(pNb)∗a = p(b)∗a = 〈p(b), a〉

we see that the map p is an adjointable operator on the Hilbert C∗-module
AA with p∗ = p. Consequently we have defined a multiplier p of A [36,
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Theorem 2.47] satisfying the required equalities. Finally, we see that

p2(a) = p(lim
N
pNa) = lim

M
pM (lim

N
pNa) = lim

M
(lim
N
pMpNa) = lim

M
pMa = p(a)

so that p2 = p, and p is a projection. �

We will now prove the various parts of Theorem 1.6. We will find it
convenient to first prove Part (b), and then to prove Part (a) and Part (c).

Proof of Theorem 1.6(b). Let H be a saturated hereditary subset of H. If
{se, pv : e ∈ E1, v ∈ E0} is a Cuntz-Krieger E-family generating C∗(E), then
the collection {se + IH , pv + IH : e ∈ (E \H)0, v ∈ (E \H)1} in C∗(E)/IH
is a Cuntz-Krieger (E \H)-family. — The first two Cuntz-Krieger relations
are immediate. To see the third, notice that if e ∈ E1 with r(e) ∈ H, then
pr(e) ∈ IH and se = sepr(e) ∈ IH , so se + IH = 0 + IH and

pv + IH =

 ∑
{e∈E1:s(e)=v}

ses
∗
e

+ IH

=
∑

{e∈E1\r−1(H):s(e)=v}

(se + IH)(se + IH)∗

+
∑

{e∈r−1(H):s(e)=v}

(se + IH)(se + IH)∗

=
∑

{e∈(E\H)1:s(e)=v}

(se + IH)(se + IH)∗.

By the universal property of C∗(E \H) there is a homomorphism ρ : C∗(E \
H) → C∗(E)/IH taking the generators of C∗(E \ H) canonically to the
elements of {se+IH , pv+IH : e ∈ (E \H)0, v ∈ (E \H)1}. Since IH is gauge
invariant by Lemma 1.11, the gauge action on C∗(E) descends to a gauge
action on C∗(E)/IH , and by checking on generators it is straightforward to
verify that ρ is equivariant for the gauge actions on C∗(E/H) and C∗(E)/IH .
Furthermore, since H is saturated and hereditary Lemma 1.12 implies that
pv /∈ IH when v /∈ H, and thus ρ(pv) = pv + IH 6= 0 when v ∈ (E \ H)0.
It then follows from the Gauge-Invariant Uniqueness Theorem that ρ is
injective. In addition, we know that the elements of {pv + IH , se + IH :
v ∈ E0, e ∈ E1} generate C∗(E)/IH , and because pv + IH = 0 + IH when
v ∈ H and se + IH = 0 + IH when r(e) ∈ H, we have that the elements
{pv + IH , se + IH : v ∈ (E \H)0, e ∈ (E \H)1} generate C∗(E)/IH . Thus ρ
is surjective, and an isomorphism. �

Proof of Theorem 1.6(a). It follows from Lemma 1.11 that the mapping
H 7→ IH maps from the lattice of saturated hereditary subsets of E0 into
the lattice of gauge-invariant ideals of C∗(E). We shall show that this
mapping is surjective. Let I be a gauge-invariant ideal in C∗(E), and set
H := {v ∈ E0 : pv ∈ I}. It follows from Lemma 1.9 that H is saturated
and hereditary. Since IH ⊆ I, we see that pv /∈ I implies pv /∈ IH . Hence
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I and IH contain exactly the same set of projections {pv : v ∈ H}. Also,
because IH ⊆ I we may define a quotient map q : C∗(E)/IH → C∗(E)/I
by q(a+ IH) = a+ I. (Strictly speaking, q is simply the quotient map from
C∗(E)/IH onto (C∗(E)/IH)/(I/IH).) Theorem 1.6(b) implies that there is
a canonical isomorphism ρ : C∗(E \ H) → C∗(E)/IH . If we consider the
composition q ◦ ρ : C∗(E \H) → C∗(E)/I, then because ρ is canonical, and
because I and IH contain the same set of projections {pv : v ∈ H}, it follows
that q ◦ ρ is nonzero on the generating projections of C∗(E \H). Further-
more, since I is gauge invariant, the gauge action on C∗(E) descends to a
gauge action on C∗(E)/I and by checking on generators (and once again
using the fact that ρ is canonical) we can verify that q ◦ ρ is equivariant for
the gauge actions on C∗(E\H) and C∗(E)/I. The Gauge-Invariant Unique-
ness Theorem then implies that ρ ◦ q is injective. Therefore q is injective,
and since q : C∗(E)/IH → C∗(E)/I is the quotient map, this implies that
I = IH . Hence the mapping H 7→ IH is surjective.

Next we shall show that the map H 7→ IH is injective. If H and K are
saturated hereditary subsets with IH = IK , then {v ∈ E0 : pv ∈ IH} = {v ∈
E0 : pv ∈ IK} and Lemma 1.12 implies that H = K.

Finally, we need to show that the map H 7→ IH is a lattice isomorphism.
Since H ⊂ K implies that IH ⊆ IK , we see that the map preserves the order
structure of the lattices. Because the map is also a bijection, this implies
that it is a lattice isomorphism. �

Proof of Theorem 1.6(c). Fix a hereditary subset X of E, and let pX be the
projection in M(C∗(E)) defined in Lemma 1.13. The fact that IX = IX
follows from Lemma 1.11. Furthermore, Lemma 1.11 implies that IX =
span{sαs∗β : α, β ∈ E∗ and r(α) = r(β) ∈ X}. Because X is hereditary,
the elements {se, pv : e ∈ s−1(X), v ∈ X} forms a Cuntz-Krieger EX -family.
(In particular, to get the third Cuntz-Krieger relation we use the fact that X
is hereditary to conclude that pr(e) is in this set whenever ps(e) is in the set.)
By the universal property of C∗(EX) there exists a surjective homomorphism
ρ : C∗(EX) → C∗({se, pv : e ∈ s−1(X), v ∈ X}), and since the gauge action
on C∗(E) restricts to a gauge action on C∗({se, pv : e ∈ s−1(X), v ∈ X}),
an application of the Gauge-Invariant Uniqueness Theorem shows that ρ is
an isomorphism.

Furthermore, since compression by the projection pX is linear and con-
tinuous, and since X is hereditary, we have that

pXIXpX = span{pXsαs∗βpX : α, β ∈ E∗ and r(α) = r(β) ∈ X}
= span{sαs∗β : α, β ∈ E∗, s(α) ∈ X, s(β) ∈ X, and r(α) = r(β)}
= C∗(EX).

Finally, we see that the corner pXIXpX is full since {pv : v ∈ X} generates
IX . �
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1.2. Condition (K). In the previous section we described and analyzed the
structure of the gauge-invariant ideals in a graph algebra. However, typically
a graph algebra will have many ideals besides the gauge-invariant ones. In
this section we shall derive a condition on a graph, called Condition (K), that
will ensure all ideals in the associated C∗-algebra are gauge invariant. Thus
for C∗-algebras of row-finite graphs satisfying Condition (K), Theorem 1.6
gives a complete description of the ideals.

If E is a row-finite graph, and I is an arbitrary ideal in C∗(E), then we
must ask: “What conditions on E would require that I be gauge invariant?”
Theorem 1.6(a) shows that any gauge-invariant ideal is of the form IH , and
therefore is generated by the pv’s which it contains. So we are really trying
to show that given an ideal I we can recover it as I = IH for H = {v ∈ E0 :
pv ∈ I}.

This is reminiscent of what we had to do when we proved that the map
H 7→ IH is surjective in the first paragraph of the proof of Theorem 1.6(a).
There we created a map q ◦ ρ : C∗(E \H) → C∗(E)/I, and used the Gauge-
Invariant Uniqueness Theorem to conclude that this map was injective and
I = IH . But what if we do not know a priori that I is gauge invariant? We
can still create the map q◦ρ : C∗(E\H) → C∗(E)/I, but we will not be able
to apply the Gauge-Invariant Uniqueness Theorem because we do not know
that C∗(E)/I has the necessary gauge action. However, not all is lost —
we could instead apply our other uniqueness theorem: The Cuntz-Krieger
Uniqueness Theorem. We will not be able to do this in general, however;
in order to apply the Cuntz-Krieger Uniqueness Theorem we need to know
that the subgraph E \H satisfies Condition (L).

This is exactly the condition we want to ensure that all ideals are gauge
invariant: For any saturated hereditary set E the subgraph E \H satisfies
Condition (L). However, because this is not a condition that is easy to check
by quickly looking at a graph, we will give a different formulation of this
condition in terms of “simple loops”, and then prove the two notions are
equivalent.

Definition 1.14. A simple loop in a graph E is a loop α ∈ E∗ with the
property that s(αi) 6= s(α1) for i ∈ {2, 3, . . . , |α|}.

In particular, a simple loop is allowed to repeat vertices or edges as it
traverses through the graph, provided that it returns to the base point only
at the end of its journey and not before.

Definition 1.15. A graph E is said to satisfy Condition (K) if no vertex in
E is the base point of exactly one simple loop; that is, every vertex in E is
either the base point of no loops or of more than one simple loop.

Beware the subtleties of Condition (K)! It is not uncommon for someone
who first encounters this definition to think they understand Condition (K)
only to come across an example at a later time that causes confusion. For
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example, the graph

v
e
))
w f
xx

g
hh

satisfies Condition (K) because eg and efg are two simple loops based at v,
and f and ge are two simple loops based at w. (There are, of course, many
other simple loops besides the ones we mentioned. For example, effg is also
a simple loop based at v.)

Likewise, the graph

v
))
55 w //

��

x

y

__@@@@@@@@

satisfies Condition (K), because there are no loops based at x and every
other vertex is the base point of at least two simple loops.

Remark 1.16. Notice that Condition (K) implies Condition (L). To see this,
let E be a graph satisfying condition (K). If α is a loop in E, then v = s(α)
is the base point of a loop, and hence there is at least one simple loop based
at v. But then α must have an exit, for otherwise there would be a unique
simple loop based at v.

Proposition 1.17. If E is a graph, then E satisfies Condition (K) if and
only if for every saturated hereditary subset H of E0 the subgraph E \ H
satisfies Condition (L).

Proof. Suppose E satisfies Condition (K). If H is a saturated hereditary
subset of E0, and α is a loop in E \H, then v = s(α) is a vertex in E0 \H.
Since α is also a loop in E, there must exist a second loop β in E based
at v. Since s(β) /∈ H, and since H is hereditary, it follows that each of the
elements of {r(βi)}|β|i=1 is an element of E0 \H. Thus the edges {βi}|β|i=1 are
elements of (E \H)1 = E1 \ r−1(H), and β is a loop in E \H based at v.
Since there are two distinct loops in E \H based at v, it follows that α has
an exit in E \H.

Conversely, suppose that E \H satisfies Condition (L) for every saturated
hereditary subset H of E0. Let v be a vertex, and let α be a simple loop
based at v. Define H := {w ∈ E0 : w � v}. It is straightforward to verify
that H is hereditary, and since v is on a loop H is also saturated. Because
the vertices on α can all reach v, α is a loop in E \H. By hypothesis α has
an exit e ∈ (E \H)1. Suppose that s(e) = s(αk) for some k ∈ {1, 2, . . . , |α|}.
Since r(e) ∈ (E \H)0 = E0 \H, we have that r(e) /∈ H and r(e) ≥ v. Thus
there exists a path µ ∈ E∗ with s(µ) = r(e) and r(µ) = v, and furthermore
we may choose the path µ so that r(µi) 6= v for 1 ≤ i < |µ|. But then
β := α1 . . . αkeµ is a simple loop based at v, which is distinct from α. In
addition, since the vertices on β can reach v, it follows that β is a loop in
E \H. Hence E \H satisfies Condition (K). �
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We shall now show that Condition (K) characterizes those row-finite
graphs having C∗-algebras whose ideals are all gauge-invariant. To do this
we will first need a lemma showing that if E is a graph containing a loop
with no exits, then C∗(E) has an ideal that is not gauge invariant — in fact,
we will show there are many ideals in C∗(E) that are not gauge invariant.

Lemma 1.18. If E is a row-finite graph containing a loop with no exits,
then C∗(E) contains an uncountable number of ideals that are not gauge
invariant.

Proof. Let α be a loop in E that has no exits, and let X = {s(αi)}|α|i=1. Then
since α has no exits we see that for all i ∈ {1, 2, . . . , |α|} it is the case that
αi is the only edge whose source is s(αi) . Thus X is hereditary. If we let
pX :=

∑|α|
i=1 ps(αi), then as shown in the proof of Theorem 1.6(c), we have

that C∗(EX) is canonically isomorphic to the full corner pXIXpX of the
ideal IX . Since EX is a simple loop on |α| vertices, we have that C∗(EX) ∼=
C(T,M|α|(C)) (see [34, Example 2.14] for details of this). Since EX is a finite
graph, Theorem 1.6(c)] implies that the gauge-invariant ideals of C∗(EX) are
in one-to-one correspondence with certain subsets of E0

X , and therefore the
number of gauge-invariant ideals of C∗(EX) is finite. However, C(T,Mn(C))
has uncountably many ideals (corresponding to the closed subsets of T) so
we may conclude that C∗(EX) has uncountably many ideals that are not
gauge invariant.

Because C∗(EX) is canonically isomorphic to pXIXpX , it follows that
pXIXpX has uncountably many ideals that are not gauge invariant. Fur-
thermore, since pXIXpX is a full corner of IX , the Rieffel Correspondence
I 7→ pXIpX is an isomorphism from the lattice of ideals of IX onto the lat-
tice of ideals of pXIXpX (see [36, Theorem 3.22] and [36, Proposition 3.24]).
In addition, since γz(pXapX) = pXγz(a)pX for all a ∈ A and for all z ∈ T,
it follows that the isomorphism I 7→ pXIpX takes gauge-invariant ideals to
gauge-invariant ideals. Because pXIXpX has uncountably many ideals that
are not gauge invariant, it follows that IX has uncountably many ideals that
are not gauge invariant. But since any ideals of IX are also ideals of C∗(E)
(recall that if I is an ideal off a C∗-algebra A, and if J is an ideal of I, then
J is an ideal of A), we may conclude that C∗(E) has an uncountable number
of ideals that are not gauge invariant. �

Theorem 1.19. A row-finite graph E satisfies Condition (K) if and only if
all ideals of C∗(E) are gauge invariant.

Proof. Suppose E satisfies Condition (K). If I is an ideal in C∗(E), then we
may let H = {v ∈ E0 : pv ∈ I} and proceed exactly as in the first paragraph
of the proof of Theorem 1.6(a)] to form the map q◦ρ : C∗(E\H) → C∗(E)/I,
which is nonzero on the projections of the generating Cuntz-Krieger (E\H)-
family. By Proposition 1.17, the graph E \ H satisfies Condition (L), and
thus we may use the Cuntz-Krieger Uniqueness Theorem to conclude that
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q ◦ ρ is injective. Hence the quotient map q is injective and I = IH . By
Lemma 1.11, the ideal I is gauge invariant.

Conversely, suppose that E does not satisfy Condition (K). By Proposi-
tion 1.17 there exists a saturated hereditary subset H such that the graph
E \H does not satisfy Condition (L). It follows that E \H contains a loop
without an exit, and therefore Lemma 1.18 implies that C∗(E \ H) con-
tains an ideal that is not gauge invariant. If γ denotes the gauge action on
C∗(E), then because IH is gauge invariant, γ descends to a gauge action
γIH on C∗(E)/IH . Furthermore, since C∗(E \H) is canonically isomorphic
to C∗(E)/IH by Theorem 1.6(b), it follows that C∗(E)/IH contains an ideal
J that is not gauge invariant with respect to the gauge action γIH . Because
the quotient map q : C∗(E) → C∗(E)/IH has the property that q ◦γz = γIHz
for all z ∈ T (to see this simply verify the equality holds on generators) we
see that q−1(J) is an ideal in C∗(E) that is not gauge invariant. �

Corollary 1.20. If E is a row-finite graph satisfying Condition (K), then
all ideals of C∗(E) are gauge invariant, and the map H 7→ IH is a lattice
isomorphism from the saturated hereditary subsets of E0 onto the ideals of
C∗(E).

Example 1.21. Since the graph E of Example 1.8 satisfies Condition (K),
we see all of the ideals of C∗(E) are gauge invariant and the lattice of ideals
obtained in Example 1.8 describes all the ideals of C∗(E). In particular,
C∗(E) has exactly three proper nontrivial ideals.

1.3. Simplicity of Graph Algebras. We shall now use our knowledge
of gauge-invariant ideals to provide a characterization of simplicity for C∗-
algebras of row-finite graphs. The amazing thing about this result is that it
is a statement about all ideals — not simply the gauge-invariant ones.

Definition 1.22. We say that a graph E is cofinal if for every v ∈ E0 and
every infinite path α ∈ E∞, there exists i ∈ N for which v ≥ s(αi).

In other words, E is cofinal if every vertex in E can reach every infinite path
in E.

Theorem 1.23. Let E be a row-finite graph. Then the following are equiv-
alent.

(1) C∗(E) is simple
(2) E satisfies Condition (L), E is cofinal, and if v, w ∈ E0 with v a

sink, then w ≥ v
(3) E satisfies Condition (K), E is cofinal, and if v, w ∈ E0 with v a

sink, then w ≥ v
(4) E satisfies Condition (L) and E0 has no saturated hereditary subsets

other than ∅ and E0

(5) E satisfies Condition (K) and E0 has no saturated hereditary subsets
other than ∅ and E0
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Proof. (1) =⇒ (2) Suppose that E is simple. Since C∗(E) does not contain
any ideals that are not gauge invariant, and by Lemma 1.18 E does not
contain a loop with no exits. Hence E satisfies Condition (L).

Next let α ∈ E∞ be an infinite path in E. Define

H := {v ∈ E0 : v � s(αi) for all i ∈ N}.

It is straightforward to verify that H is saturated and hereditary. Because
C∗(E) is simple, the only gauge-invariant ideal of C∗(E) are {0} and C∗(E),
and it follows from Theorem 1.6(a) that the only saturated hereditary sub-
sets of E0 are ∅ and E0. Since H is not equal to all of E0 (the vertex
s(α1) /∈ H, for example), we must have that H = ∅. But then every vertex
in E0 can reach the infinite path α.

Finally, let v ∈ E0 be a sink. If we let H := {w ∈ E0 : w � v}, then
one can verify that H is a saturated hereditary subset. As in the previous
paragraph we must have that H equals either ∅ or E0. Since v /∈ H, we
must have H = ∅. But then every vertex in E can reach v.

(2) =⇒ (3) It suffices to show that under the hypotheses of (2), E satisfies
Condition (K). Let v be the base point of a simple loop α. Since E satisfies
Condition (L), it follows that α has an exit e, with s(e) = s(αi) from some
i ∈ {1, 2, . . . , |α|}. If we consider the infinite path ααα . . ., then because E
is cofinal we know that r(e) can reach this infinite path, and thus r(e) can
reach v. Let µ be the shortest path with s(µ) = r(e) and r(µ) = v. Then
α1 . . . αi−1eµ is a simple loop based at v that is distinct from α. Hence
there are two simple loops based at v, and since v was arbitrary, E satisfies
Condition (K).

(3) =⇒ (4) Since Condition (K) is a stronger condition than Condi-
tion (L), we have that E satisfies Condition (L). We shall suppose that
H is a saturated hereditary subset with H 6= ∅ and H 6= E0, and arrive at
a contradiction. Choose v ∈ E0 \H. Since H is nonempty and hereditary,
we know that there are vertices in H that cannot reach v. Thus, due to our
hypotheses, v is not a sink. Since E is row-finite and since H is saturated, it
must be the case that there is an edge e1 ∈ E1 with s(e1) = v and r(e1) /∈ H.
Since r(e1) /∈ H we may repeat this argument to produce and edge e2 ∈ E1

with s(e2) = r(e1) and r(e2) /∈ H. Continuing in this fashion we produce an
infinite path e1e2e3 . . . with the property that r(ei) /∈ H for all i ∈ N. But
since H is nonempty and hereditary, there are vertices in H that cannot
reach r(ei) for any i ∈ N. This contradicts the fact that E is cofinal. Hence
we may conclude that the only saturated hereditary subsets of E0 are ∅ and
E0.

(4) =⇒ (5) It suffices to show that under the hypotheses of (4), E satisfies
Condition (K). Let v be the base point of a simple loop α. Since E satisfies
Condition (L), it follows that α has an exit e, with s(e) = s(αi) from some
i ∈ {1, 2, . . . , |α|}. If we let

H = {w ∈ E0 : w � s(αi) for all i = 1, 2, . . . , |α|},
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then one can verify that H is a saturated hereditary subset. By hypothesis,
either H = ∅ or H = E0. Since the vertex v /∈ H, we must have H = ∅.
But then every vertex in E can reach the vertices on the loop α, and hence
every vertex can reach v. Let µ be the shortest path with s(µ) = r(e) and
r(µ) = v. Then α1 . . . αi−1eµ is a simple loop based at v that is distinct from
α. Hence there are two simple loops based at v, and since v was arbitrary,
E satisfies Condition (K).

(5) =⇒ (1) If E satisfies Condition (K), then Theorem 1.19 implies that
every ideal of C∗(E) is gauge invariant. The result then follows from Theo-
rem 1.6(a).

�

Corollary 1.24. If E is a row-finite graph with two or more sinks, then
C∗(E) is not simple.

Proof. If v1 and v2 are sinks in E, then v1 cannot reach v2. Thus the
hypotheses of (2) in Theorem 1.23 are not satisfied. �

Corollary 1.25. If E is a row-finite graph containing a sink, and if C∗(E)
is simple, then E contains no loops and no infinite paths.

Proof. Let v be a sink in E. If α is a loop in E, then v cannot reach the
infinite path ααα . . ., which implies that E is not cofinal and the hypotheses
of (2) in Theorem 1.23 are not satisfied. Similarly, if α is an infinite path. �

As shown in the above corollary, simplicity of C∗(E) imposes restrictions
on the number of sinks and the presence of loops. In fact, more can be
said about simple C∗-algebras of row-finite graphs: they are all either AF-
algebras or purely infinite algebras.

Remark 1.26. A C∗-algebra is an AF-algebra (AF stands for approximately
finite-dimensional) if it can be written as the closure of the increasing union
of finite-dimensional C∗-algebras; or, equivalently, if it is the direct limit
of a sequence of finite-dimensional C∗-algebras. It has been shown in [27,
Theorem 2.4] that if E is a row-finite graph, then C∗(E) is AF if and only
if E has no loops.

Remark 1.27. If A is a C∗-algebra, we say that a C∗-subalgebra B of A is a
hereditary subalgebra if bab′ ∈ B for all a ∈ A and b, b′ ∈ B (or, equivalently,
if a ∈ A+ and b ∈ B+ the inequality a ≤ b implies a ∈ B). Two projections
p and q in a C∗-algebra A are said to be equivalent if there exists u ∈ A
such that p = uu∗ and q = u∗u, and a projection p is said to be infinite if it
is equivalent to a proper subprojection.

A simple C∗-algebra A is purely infinite if every nonzero hereditary subal-
gebra of A contains an infinite projection. (The definition of purely infinite
for non-simple C∗-algebra is more complicated, see [25].) It has been shown
in [2, Proposition 5.3] and [27, Theorem 3.9] that if E is a row-finite graph,
then every nonzero hereditary subalgebra of C∗(E) contains an infinite pro-
jection if and only if E satisfies Condition (L) and every vertex in E connects
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to a loop. Combined with Theorem 1.23, this allows us to characterize purely
infinite simple C∗-algebras of row-finite graphs.

In fact, we have the following dichotomy for simple C∗-algebras of row-
finite graphs.

Proposition 1.28 (The Dichotomy for Simple Graph Algebras). Let E be
a row-finite graph. If C∗(E) is simple, then either

(1) C∗(E) is an AF-algebra if E contains no loops; or
(2) C∗(E) is purely infinite if E contains a loop.

Proof. If E has no loops, the fact that C∗(E) is an AF-algebra follows
[27, Theorem 2.4]. On the other hand, if E contains a loop α, then since
C∗(E) is simple we know from Theorem 1.23(2) that E is cofinal, and every
vertex in E can reach the infinite path ααα . . .. Thus every vertex in E can
reach a loop. Furthermore, Theorem 1.23(2) also tells us that E satisfies
Condition (L), and thus [2, Proposition 5.3] implies that C∗(E) is purely
infinite. �

Remark 1.29. AF-algebras and purely infinite C∗-algebras are very different.
An AF-algebra, being the direct limit of finite-dimensional C∗-algebras, is
close to being a finite-dimensional C∗-algebra, and as a result cannot contain
any infinite projections. On the other hand, purely infinite C∗-algebras con-
tain an abundance of infinite projections — one in every nonzero hereditary
subalgebra — which shows that they are very far from being finite dimen-
sional C∗-algebras. As the dichotomy for simple graph algebras shows, the
presence of loops in a graph E causes the associated C∗-algebra C∗(E) to
be spacious, in the sense that each loop results in the existence of infinite
projections C∗(E).

1.4. Concluding Remarks. With the results of this section was has a
very good understanding of the gauge-invariant ideals in the C∗-algebra of
a row-finite graph, as well as simplicity of C∗(E). However, one may ask:
What about general ideals? Can one describe the structure of all ideals of
C∗(E), even when E does not satisfy Condition (K)? This question has been
answered affirmatively by Hong and Szymański in [17].

One way of describing the ideals in a C∗-algebra is in terms of primitive
ideals. An ideal is primitive if it is the kernel of an irreducible representation
(and, for separable C∗-algebras, an ideal is primitive if and only if it is
prime). The set of primitive ideals in a C∗-algebra A is denoted by PrimA,
and every ideal in A is the intersection of the primitive ideals containing it
[36, Proposition A.17]. Furthermore, for an ideal I of A, the set h(I) :=
{P ∈ PrimA : I ⊆ P} are the closed sets of a topology on PrimA [36,
Proposition A.27], and PrimA endowed with this topology is called the
primitive ideal space of A. Thus if one can describe the set PrimA as well
as the topology on PrimA, one has a description of all ideals in A.

In [17] Hong and Szymański have carried out this program for graph
algebras. They give a description of the primitive ideals in C∗(E) in terms
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of maximal tails of vertices, and they also give a description of the topology
on the space PrimC∗(E). (In fact they do this for arbitrary graphs, without
any assumption of row-finiteness!) As expected, this description is fairly
involved (even if one restricts to the row-finite case), so we will not attempt
to state it here.

2. C∗-algebras of Arbitrary Graphs

In the previous section we restricted our attention to row-finite graphs
to avoid complications that arise when infinite emitters are present. This
is fairly common in the subject, and when the theory of graph C∗-algebras
was developed, theorems were often proven first in the row-finite case, and
later extended to the general setting.

The theory of C∗-algebras of arbitrary graphs is significantly different
from the theory of C∗-algebras of row-finite graphs. Although theorems for
row-finite graph algebras sometimes remain true when one removes the word
“row-finite” from their statements, it is not uncommon for new phenomena
to appear in the non-row-finite case that require substantially new descrip-
tions and theorems. More importantly, many of the proofs of theorems for
row-finite graph algebras rely heavily on the non-row-finite assumption so
that in the general setting entirely new methods and techniques must be
developed to prove results.

In this section we will describe a construction called “desingularization”
that allows one to bootstrap results from the row-finite case to the general
setting. If E is an arbitrary graph, then one can “desingularize” E to form a
row-finite graph F with no sinks that has the property that C∗(E) is isomor-
phic to a full corner of C∗(F ). This allows one to use Morita Equivalence
to study C∗(E) in terms of C∗(F ).

In this section we will frequently draw graphs that have an infinite number
of edges between vertices. We will use the notation

v
(∞)
// w

in our graphs to indicate that there are a countably infinite number of edges
from v to w.

In order to desingularize graphs, we will need to remove sinks and infinite
emitters.

Definition 2.1. If E is a graph and v0 is a sink in E, then by adding a tail
at v0 we mean attaching a graph of the form

v0 // v1 // v2 // v3 // · · ·

to E at v0.

Definition 2.2. If E is a graph and v0 is an infinite emitter in E, then by
adding a tail at v0 we mean performing the following process: We first list
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the edges g1, g2, g3, . . . of s−1(v0). Then we add a graph of the form

v0
e1 // v1

e2 // v2
e3 // v3

e4 // · · ·

to E at v0, remove the edges in s−1(v0), and for every gj ∈ s−1(v0) we
draw an edge fj from vj−1 to r(gj). We will find it convenient to use the
following notation: For any gj ∈ s−1(v0) we let αgjv0 denote the path α

gj
v0 :=

e1e2 . . . ej−1fj in F .

Definition 2.3. If E is a graph, then a desingularization of E is a graph F
formed by adding a tail to every sink and infinite emitter of E.

Remark 2.4. We speak of “a” desingularization because the process of adding
a tail to an infinite emitter is not unique; it depends on the ordering of the
edges in s−1(v0). Thus there may be different graphs F that are desingular-
izations of E. In addition, one can see that a desingularization of a graph
is always row-finite and has no sinks.

Example 2.5. Here is an example of a graph E and a desingularization F of
E.

E v0

(∞)

��
w ZZ

F v0

f1
��

e1 // v1
e2 //

f2

}}{{
{{

{{
{{

v2
e3 //

f3

vvmmmmmmmmmmmmmmm · · ·

f4
tthhhhhhhhhhhhhhhhhhhhhhh

w ZZ

Example 2.6. Suppose E is the following graph:

w

  A
AA

AA
AA

A x0

v0
(∞)

!!B
BB

BB
BB

B

g3

==||||||||

g1

��

g2

EE

y

>>}}}}}}}}
z0

Let us label the edges from v0 to z0 as {g4, g5, g6, . . .}. Then a desingular-
ization of E is given by the following graph F .

w

  A
AA

AA
AA

A x0 // x1 // x2 // x3 // · · ·

v0

f1

�� e1 // v1
e2 //

f2

ii v2
e3 //

f3
aaCCCCCCCC

v3
e4 //

f4

vvmmmmmmmmmmmmmmm v4
e5 //

f5

ttiiiiiiiiiiiiiiiiiiiiiii · · ·

f6
ssfffffffffffffffffffffffffffffff

y

>>}}}}}}}}
z0 // z1 // z2 // z3 // · · ·
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Example 2.7. If E is the O∞ graph shown here, then a desingularization is
given by the graph F :

E v0

(∞)

EE
F v0 //

77
v1 //

QQ
v2 //

TT
v3 //

VV
v4 //

YY
· · ·

[[

The following fact is what will allow us to use desingularization to extend
results for row-finite graph algebras to the general setting.

Theorem 2.8. Let E be a graph. If F is a desingularization of E and
pE0 is the projection in M(C∗(F )) described in Lemma 1.13, then C∗(E) is
isomorphic to the corner pE0C∗(F )pE0, and this corner is full.

Proof. Let {se, pv : e ∈ F 1, v ∈ F 0} be a Cuntz-Krieger F -family that
generates C∗(F ).

For any z ∈ T we see that

{se : e ∈ F 1 and r(e) /∈ E0} ∪ {zse : e ∈ F 1 and r(e) ∈ E0} ∪ {pv : v ∈ F 0}

is a Cuntz-Krieger F -family, and thus induces a homomorphism βz : C∗(F ) →
C∗(F ) with βz(pv) = pv and

βz(se) =

{
se if r(e) /∈ E0

zse if r(e) ∈ E0.

Furthermore, βz is an inverse for βz, so βz ∈ AutC∗(F ), and we have defined
a gauge action β : T → AutC∗(F ).

For v ∈ E0 we define qv := pv, and for e ∈ E1 we define

te :=

{
sαe

s(e)
if s(e) is an infinite emitter

se if s(e) is not an infinite emitter

where αes(e) is the path in F described in Definition 2.2. It is straightforward
to verify that {te, qv : e ∈ E1, v ∈ E0} is a Cuntz-Krieger E-family (recall
that if v0 is an infinite emitter in E, then the third Cuntz-Krieger relation
does not impose any requirements on qv0). Thus, by the universal property
of C∗(E), there exists a homomorphism ρ : C∗(E) → C∗(F ) taking the
generating partial isometries to the te’s and the generating projections to
the qv’s.

Let γ denote the standard gauge action on C∗(E). Since the only edge of
the path αes(e) = e1 . . . ej−1fj whose range is in E0 is fj we see that

βz(sαe
s(e)

) = βz(se1 . . . sej−1sfj ) = se1 . . . sej−1(zsfj ) = zse1 . . . sej−1sfj = zsαe
s(e)
.

Thus βz ◦ ρ and ρ ◦ γz agree on the generators of C∗(E), and consequently
βz ◦ ρ = ρ ◦ γz. Since qv 6= 0 for all v ∈ E0, the Gauge-Invariant Uniqueness
Theorem tells us that ρ is injective. Thus ρ is an isomorphism onto im ρ =
C∗({te, qv : e ∈ E1, v ∈ E0}).
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We see that pE0qv = pE0pv = pv for all v ∈ E0. Furthermore, when e ∈ E1

with s(e) not an infinite emitter we have pE0te = pE0se = se = te, and when
e ∈ E1 with s(e) an infinite emitter we have pE0te = pE0sαe

s(e)
= sαe

s(e)
= te.

Thus im ρ is contained the corner pE0C∗(F )pE0 .
Conversely, since a 7→ pE0apE0 is continuous and linear

pE0C∗(F )pE0 = span{pE0sαs
∗
βpE0 : α, β ∈ F ∗, r(α) = r(β)}

= span{sαs∗β : α, β ∈ F ∗, r(α) = r(β), s(α) ∈ E0, r(α) ∈ E0}.

Any path α in F whose source is in E0 may be written as α1 . . . αke1e2 . . . en,
where each αi is either an edge in E1 or a path of the form αs(e)e for e ∈ E1,
and where e1 . . . en is a path along a tail. Thus to show that pE0C∗(F )pE0 is
contained in im ρ it suffices to show that se1...ens

∗
e1...en is contained in im ρ.

We shall show this by induction on n. If n = 0, then se1...ens
∗
e1...en = ps(e) ∈

im ρ. Assume that se1...ens
∗
e1...en ∈ im ρ. Then there are two edges, en+1 and

fj , whose source is r(en). Hence pr(en) = sen+1s
∗
en+1

+ sfjs
∗
fj

, and

se1...en+1s
∗
e1...en+1

= se1...en(pr(en)−sfjs
∗
fj

)s∗e1...en = se1...ens
∗
e1...en−sαes(e)s

∗
αe
s(e)

which is in im ρ. Thus pE0C∗(F )pE0 = im ρ.
Finally, to see that pE0C∗(F )pE0 is full, suppose I is an ideal containing

this corner. Then pv ∈ pE0C∗(F )pE0 ⊆ I when v ∈ E0. When v ∈ F 0 \ E0,
then v = r(e1 . . . en) for some path e1 . . . en on an added tail. Thus se1...en =
ps(e1)se1...en ∈ I, and pr(e) = s∗e1...ense1...en ∈ I. Since {pv : v ∈ F 0} ⊆ I, and
F is row-finite, it follows from Theorem 1.6(a) that I is all of C∗(F ). �

The advantage of the process of desingularization is that it is very con-
crete, and it allows us to use the row-finite graph F to see how the properties
of C∗(E) are reflected in the graph E. We will see examples of this in the fol-
lowing proofs, as we show how to extend results for C∗-algebras of row-finite
graphs to general graph algebras.

Theorem 2.9. Let E be a graph. The graph algebra C∗(E) is an AF-algebra
if and only if E has no loops.

Proof. Let F be a desingularization of E. Since F is row-finite, it follows
from [27, Theorem 2.4] that C∗(F ) is an AF-algebra if and only if F has no
loops. It follows from [9, Theorem 9.4] that Morita equivalence preserves
AF-ness for separable C∗-algebra. Thus C∗(E) is an AF-algebra if and only
if F has no loops. Since E has no loops if and only if F has no loops, the
result follows. �

Theorem 2.10. Let E be a graph. If E satisfies Condition (L) and every
vertex in E connects to a loop in E, then there exists an infinite projection
in every nonzero hereditary subalgebra of C∗(E).

Proof. Let F be a desingularization of E. We see that if E satisfies Condi-
tion (L), then F satisfies Condition (L). Also, if every vertex in E connects
to a loop in E, then every vertex in F connects to a loop in F . It then
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follows from [2, Proposition 5.3] that there exists an infinite projection in
every nonzero hereditary subalgebra of C∗(F ). Since this is a property that
is preserved by passing to corners, there exists an infinite projection in every
nonzero hereditary subalgebra of C∗(E). �

Remark 2.11. The corollary of Theorem 2.10 is also true; the proof of [27,
Theorem 3.9] works for arbitrary graphs.

In each of the above theorems we have seen that we have the same de-
scriptions as in the row-finite case, and basically each of the theorems for
row-finite graph algebras remains true when we remove the term “row-
finite” from the theorem’s statement. Next we characterize simplicity for
C∗-algebras of arbitrary graphs. In this situation we shall see that there are
new phenomena occurring, which will require a description different from
that in the row-finite case.

The following theorem generalizes the characterization given in Theo-
rem 1.23(2).

Theorem 2.12. If E is a graph, then C∗(E) is simple if and only if E has
the following four properties:

(1) E satisfies Condition (L),
(2) E is cofinal,
(3) if v, w ∈ E0 with v a sink, then w ≥ v, and
(4) if v, w ∈ E0 with v an infinite emitter, then w ≥ v.

Proof. Let F be a desingularization of E. Since simplicity is preserved by
Morita equivalence, C∗(E) is simple if and only if C∗(F ) is simple. But
since F is row-finite with no sinks, Theorem 1.23(2) implies that C∗(F ) is
simple if and only if F satisfies Condition (L) and F is cofinal. We see that
F satisfies Condition (L) if and only if E satisfies Condition (L), giving (1).
Also, we see that the infinite paths of F are of two types: either they come
from infinite paths in E or they are paths that go along the tails added in
forming the desingularization. Thus F is cofinal if and only if every vertex
w in E can reach every infinite path in E, which occurs if and only if every
vertex w in F can reach every infinite path in E, every sink in E, and every
infinite emitter in E; this gives (2), (3), and (4). �

Definition 2.13. We say that a graph E is transitive if for every v, w ∈ E0

it is the case that v ≥ w and w ≥ v.

Corollary 2.14. If E is a graph in which every vertex is an infinite emitter,
then C∗(E) is simple if and only if E is transitive.

Using our characterization of simplicity, we can now show that the di-
chotomy for simple graph algebras holds even when the graph is not row-
finite.

Proposition 2.15 (The Dichotomy for Simple Graph Algebras). Let E be
a graph. If C∗(E) is simple, then either
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(1) C∗(E) is an AF-algebra if E contains no loops; or
(2) C∗(E) is purely infinite if E contains a loop.

Proof. If E has no loops, the fact that C∗(E) is an AF-algebra follows
Theorem 2.9. On the other hand, if E contains a loop α, then since C∗(E) is
simple we know from Theorem 2.12 that E is cofinal, and every vertex in E
can reach the infinite path ααα . . .. Thus every vertex in E can reach a loop.
Furthermore, Theorem 2.12 also tells us that E satisfies Condition (L), and
thus Theorem 2.10 implies that C∗(E) is purely infinite. �

Finally, we shall use the process of desingularization to analyze the ideal
structure of C∗-algebras corresponding to graphs satisfying Condition (K).
This will be more involved than our prior applications of desingularization,
and we shall see that that structure of ideals in C∗(E) will require more
than just the saturated hereditary subsets of E as it does in the row-finite
case.

We first need to identify the saturated hereditary subsets of F in terms
of E. Recall that if E is a directed graph, then a set H ⊆ E0 is hereditary
if whenever e ∈ E1 with s(e) ∈ H, then r(e) ∈ H. A hereditary set H is
called saturated if every vertex that is not a sink or infinite emitter and that
feeds only into H is itself in H; that is, if

v not a sink or infinite emitter, and {r(e) | s(e) = v} ⊆ H implies v ∈ H.

Let E be a graph that satisfies Condition (K). When E is row-finite The-
orem 1.6(a) and Theorem 1.19 show that the saturated hereditary subsets
of E correspond to the ideals of C∗(E) via the map H 7→ IH , where IH
is the ideal generated by {pv : v ∈ H}. When E is not row-finite, this is
not the case. For an arbitrary graph E, one can check that H 7→ IH is
still injective, just as shown in the proof of Theorem 1.6(a). However, it is
no longer true that this map is surjective; that is, there may exist ideals in
C∗(E) that are not of the form IH for some saturated hereditary set H. The
reason the proof for row-finite graphs no longer works is that if I is an ideal,
then {se + I, pv + I} will not necessarily be a Cuntz-Krieger E \H-family
for the graph E \ H defined in Theorem 1.6(a). (And, consequently, it is
sometimes not true that C∗(E)/IH ∼= C∗(E \H).) To describe an ideal in
C∗(E) we will need a saturated hereditary subset and one other piece of
information. Loosely speaking, this additional piece of information tells us
how close {se + I, pv + I} is to being a Cuntz-Krieger E \H-family.

Definition 2.16. Given a saturated hereditary subset H ⊆ E0, we define the
breaking vertices of H to be the set

BH := {v ∈ E0 : v is an infinite-emitter and 0 < |s−1(v) ∩ r−1(E0 \H)| <∞}.

We see that BH is the set of infinite-emitters that point to a finite (and
nonzero) number of vertices not in H. Also, since H is hereditary, BH is
disjoint from H.
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Now fix a saturated hereditary subset H of E and let S be any subset of
BH . Let {se, pv} be the canonical generating Cuntz-Krieger E-family and
define

I(H,S) := the ideal in C∗(E) generated by {pv : v ∈ H} ∪ {pHv0 : v0 ∈ S},

where pHv0 is the gap projection defined by

pHv0 := pv0 −
∑

s(e)=v0
r(e)/∈H

ses
∗
e.

Note that the definition of BH ensures that the sum on the right is finite.

Definition 2.17. Let E be a graph. We say that (H,S) is an admissible pair
for E if H is a saturated hereditary subset of vertices of E and S ⊆ BH . For
a fixed graph E we order the collection of admissible pairs for E by defining
(H,S) ≤ (H ′, S′) if and only if H ⊆ H ′ and S ⊆ H ′ ∪ S′.

Example 2.18. Let E be the graph

v
(∞)
// w

(∞)
//

��

x

y

Then the saturated hereditary subsets of E are E0, {w, x, y}, {x, y}, {x},
{y}, and ∅. Also B{x} = {w}, and BH = ∅ for all other saturated hereditary
H in E. Thus the admissible pairs of E are:

(E0, ∅), ({w, x, y}, ∅), ({x, y}, ∅), ({x}, {w}), ({x}, ∅), ({y}, ∅), (∅, ∅)

and these admissible pairs are ordered in the following way.

(E0, ∅)

({w, x, y}, ∅)

OOOOOOOOOOOO

ooooooooooo

({x, y}, ∅)

WWWWWWWWWWWWWWWWWWWWWWWWW ({x}, {w})

({y}, ∅)

OOOOOOOOOOOO
({x}, ∅)

oooooooooooo

(∅, ∅)

We shall show that the correspondence (H,S) 7→ I(H,S) is an inclusion-
preserving bijection. To do this we will first describe a correspondence
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between admissible pairs in E and saturated hereditary subsets of vertices
in a desingularization of E.

Definition 2.19. Suppose that E is a graph and let F be a desingular-
ization of E. Also let (H,S) be an admissible pair for E. We define a
saturated hereditary subset HS ⊆ F 0 as follows. We first define H̃ :=
H ∪ {vn ∈ F 0 : vn is on a tail added to a vertex in H}. Now for each
v0 ∈ S let Nv0 be the smallest nonnegative integer such that r(fj) ∈ H
for all j > Nv0 . (The number Nv0 exists since v0 ∈ BH implies that
there must be a vertex on the tail added to v0 beyond which each subse-
quent vertex points only to the next vertex on the tail and into H.) Define
Tv0 := {vn : vn is on the tail added to v0 and n ≥ Nv0} and define

HS := H̃ ∪
⋃
v0∈S

Tv0 .

Note that for v0 ∈ BH we have v0 /∈ HS . Furthermore, the tail attached
to v0 will eventually be inside HS if and only if v0 ∈ S. It is easy to check
that HS is hereditary, and choosing Nv0 to be minimal ensures that HS is
saturated.

Example 2.20. Let E be the graph shown in Example 2.6. If we letH = {z0},
then H is saturated hereditary and BH = {v0}. Suppose S = {v0}. Then
H̃ = {z0, z1, z2, . . .} and Nv0 = 3, so Tv0 = {v3, v4, v5, . . .}, and HS =
{z0, z1, . . . , v3, v4, . . .}.

In a similar manner we can see that H∅ = {z0, z1, z2, . . .}.

Lemma 2.21. Let E be a graph and let F be a desingularization of E.
The map (H,S) 7→ HS is an order-preserving bijection from the lattice of
admissible pairs of E onto the lattice of saturated hereditary subsets of F .

Proof. Let K be a saturated hereditary subset of F . Define

SK := {v0 ∈ BK∩E0 : past a certain point all vertices on the tail

added to v0 are in the set K}.

One can easily check that the map K 7→ (K ∩ E0, SK) is an inverse for the
map (H,S) 7→ HS , and that the map (H,S) 7→ HS is inclusion preserving.

�

To analyze the ideals of C∗(E) we will make use of the Rieffel correspon-
dence. Whenever two C∗-algebra A and B are Morita equivalent, there is
a lattice isomorphism between the lattice of ideals of A and the lattice of
ideals of B. When one of these C∗-algebras is a full corner of the other, this
correspondence takes the following form:

Lemma 2.22. Suppose A is a C∗-algebra, p is a projection in the multiplier
algebra M(A), and pAp is a full corner of A. Then the map I 7→ pIp is
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an order-preserving bijection from the ideals of A to the ideals of pAp; its
inverse takes an ideal J in pAp to

AJA := span{aba′ : a, a′ ∈ A and b ∈ J}.

Proof. Suppose I is an ideal in A. The continuity of a 7→ pap shows that
pIp is closed in pAp, and (pAp)(pIp)(pAp) = p(Ap)I(pA)p ⊆ pIp shows
that pIp is an ideal in pAp. Furthermore,

A(pIp)A = Ap(AIA)pA = ApAIApA = AIA = I.

Conversely, if J is an ideal in pAp, then

pAJAp = pAJAp = pA(pAp)J(pAp)Ap = (pAp)J(pAp) = J.

The above two paragraphs show that the maps under discussion are in-
verses of each other. It is also clear that these maps preserve ordering by
inclusion. �

Proposition 2.23. Let E be a graph and let F be a desingularization of E.
Let pE0 be the projection in M(C∗(F ) described in Lemma 1.13, and identify
C∗(E) with pE0C∗(F )pE0 as described in Theorem 2.8. If H is a saturated
hereditary subset of E0 and S ⊆ BH , then then pE0IHSpE0 = I(H,S).

Proof. Let {se, pv : e ∈ F 1, v ∈ F 0} be a generating Cuntz-Krieger F -family.
As shown in the proof of Theorem 2.8, the set {te, qv : e ∈ E1, v ∈ E0}, where
qv := pv and

te :=

{
sαe

s(e)
if s(e) is an infinite emitter

se if s(e) is not an infinite emitter

is a Cuntz-Krieger E-family that generates a C∗-subalgebra of C∗(F ) iso-
morphic to C∗(E), and furthermore, this C∗-subalgebra is equal to the cor-
ner of C∗(F ) determined by pE0 .

It follows from Lemma 1.11 that

IHS = span{sαs∗β : α, β ∈ F ∗ and r(α) = r(β)}.
Thus

pE0IHSpE0

= span{pE0sαs
∗
βpE0 : α, β ∈ F ∗ and r(α) = r(β) ∈ HS}

= span{sαs∗β : α, β ∈ F ∗, s(α) ∈ E0, s(α) ∈ E0, and r(α) = r(β) ∈ HS}
If sαs∗β is an element of this ideal with r(α) = r(β) ∈ H, then sαs∗β is of the
form tµt

∗
ν for µ, ν ∈ E∗ with r(µ) = r(ν) ∈ H, and hence sαs∗β ∈ I(H,S). On

the other hand, if sαs∗β is an element of this ideal with r(α) = r(β) ∈ Tv0 for
some v0 ∈ S, then sαs

∗
β is of the form tµse1...eks

∗
e1...ek

t∗ν for µ, ν ∈ E∗ with
r(µ) = r(ν) = v0. But then

sαs
∗
β = tµse1...eks

∗
e1...ek

t∗ν

= tµse1...ek−1
(pvk−1

− sfks
∗
fk

)s∗e1...ek−1
t∗ν
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= tµse1...ek−1
s∗e1...ek−1

t∗ν − tµse1...ek−1fks
∗
e1...ek−1fk

t∗ν

...

= tµt
∗
ν −

k∑
j=1

tµtgj t
∗
gj t

∗
ν

= tµ(qv0 −
∑

s(g)=v0
r(g)/∈H

tgt
∗
g)t

∗
ν −

∑
r(gj)∈H
j≤k

tµgj t
∗
µgj

= tµq
H
v0t

∗
ν −

∑
r(gj)∈H
j≤k

tµgj t
∗
µgj

∈ I(H,S)

Hence we have shown that pE0IHSpE0 ⊆ I(H,S).
To verify the reverse inclusion we shall show that the generators {qv : v ∈

H} ∪ {qHv0 : v0 ∈ S} of I(H,S) are in pE0IHSpE0 . Clearly for v ∈ H we have
qv = pv = pE0pvpE0 ∈ pE0IHSpE0 , so all that remains to show is that for
every v0 ∈ S we have qHv0 ∈ pE0IHSpE0 .

Let v0 ∈ S and n := Nv0 . Then

pv0 = se1s
∗
e1 + sf1s

∗
f1

= se1pv1s
∗
e1 + sf1s

∗
f1

= se1(se2s
∗
e2 + sf2s

∗
f2)s

∗
e1 + sf1s

∗
f1

= se1e2pv2s
∗
e1e2 + se1f2s

∗
e1f2 + sf1s

∗
f1

...

= se1...ens
∗
e1...en +

n∑
j=1

tgj t
∗
gj

Now since r(en) = vn ∈ HS we see that pvn ∈ IHS and hence sen = senpvn ∈
IHS . Consequently, se1...ens

∗
e1...en ∈ IHS . Similarly, whenever r(gj) ∈ H,

then tgj t
∗
gj ∈ IHS . Now, by definition, every gj with r(gj) /∈ H has j < n.

Therefore the above equation shows us that

qHv0 = qv0 −
∑

s(gj)=v0
r(gj)/∈H

tgj t
∗
gj

= pv0 −
∑

s(gj)=v0
r(gj)/∈H

tgj t
∗
gj

=
∑

r(gj)∈H
j<n

tgj t
∗
gj + se1...ens

∗
e1...en
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which is an element of IHS by the previous paragraph. Hence IHS ⊆ IH,S .
�

Theorem 2.24. Let E be a graph that satisfies Condition (K). Then the
map (H,S) 7→ I(H,S) is an inclusion-preserving bijection from admissible
pairs for E onto the ideals of C∗(E).

Proof. Let F be a desingularization of E. First, it follows from Lemma 2.21
that the map (H,S) 7→ HS is an order-preserving bijection from the admis-
sible pairs of E onto the saturated hereditary subsets of F . Second, since
the loops in E are in one-to-one correspondence with the loops in F , we
see that F satisfies Condition (K); because F is row-finite, it follows from
Theorem 1.6 and Theorem 1.19 that the map H 7→ IH is an order-preserving
bijection from the saturated hereditary subsets of F onto the ideal of C∗(F ).
Third, we see from Theorem 2.8 and Lemma 2.22 that the map I 7→ pE0IpE0

is an order-preserving bijection from the ideals of C∗(F ) onto the ideals of
C∗(E).

Composing these three maps gives (H,S) 7→ pE0IHSpE0 , and the result
then follows from Proposition 2.23. �

Remark 2.25. When E does not satisfy Condition (K), the ideals I(H,S) are
precisely the gauge-invariant ideals in C∗(E) [1, Theorem 3.6]. In addition,
although we have spoken of the collection of admissible pairs as being an
ordered set, it is also a lattice and the map (H,S) 7→ I(H,S) is a lattice
isomorphism. This lattice structure is described in [7, §3], but because it is
somewhat complicated we left it out of our discussion to avoid non-insightful
technicalities.

Furthermore, we have already discussed how the quotient C∗(E)/I(H,S)

is not necessarily isomorphic to C∗(E \ H) because the collection {se +
I(H,S), pv + I(H,S)} may fail to satisfy the third Cuntz-Krieger relation at
breaking vertices for H. However, one can show that C∗(E)/I(H,S) is iso-
morphic to C∗(FH,S), where FH,S is the graph defined by

F 0
H,S := (E0\H) ∪ {v′ : v ∈ BH\S}
F 1
H,S := {e ∈ E1 : r(e) /∈ H} ∪ {e′ : e ∈ E1, r(e) ∈ BH\S}

and r and s are extended by s(e′) = s(e) and r(e′) = r(e)′. (One can see
that FH,S is formed by outsplitting E \F at the the breaking vertices not in
S, and this adds a sink to E \H for each vertex in BH \S.) A construction
of this isomorphism can be found in [1, Corollary 3.5]. One can also see that
when S = BH , we have FH,S = E \ H. So if H is a saturated hereditary
subset of E, then C∗(E)/I(H,BH)

∼= C∗(E \H).

We conclude this section by mentioning that desingularization has also
been used to generalize many other results for row-finite graph algebras to
general graph algebras: In [7, Corollary 2.12] desingularization was used to
extend the Cuntz-Krieger Uniqueness Theorem, in [7, §4] desingularization
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was used to extend the description of PrimC∗(E) when E satisfies Condi-
tion (K), in [8] desingularization was used to extend the computations of
K-theory and Ext for C∗(E), and in [11] desingularization was used to ex-
tend characterizations of liminal and Type I graph algebras to the general
setting.

As with any construction, it is good to understand not only the uses of
desingularization, but also its limitations. If we look at the proof of Theo-
rem 2.8 we see that C∗(E) is isomorphic to a full corner of C∗(F ). However,
this isomorphism is not equivariant for the gauge actions on C∗(E) and
C∗(F ) — in fact, in order to apply the Gauge-Invariant Uniqueness The-
orem in the proof of Theorem 2.8, we had to create a new gauge action β
on C∗(F ). One of the consequences of this fact is that there is no obvi-
ous way to use desingularization to extend the Gauge-Invariant Uniqueness
Theorem for row-finite graph algebras to general graph algebras. Currently,
all known proofs of the Gauge-Invariant Uniqueness Theorem for arbitrary
graphs either prove the result directly or use approximations by subalgebras
that are isomorphic to C∗-algebras of finite graphs (see [35, §1] and [1, The-
orem 2.1]. However, if it is possible, it might be interesting to have a proof
of the Gauge-Invariant Uniqueness Theorem that uses desingularization.

3. K-theory of Graph Algebras

In K-theory one associates to each C∗-algebra A two abelian groups
K0(A) and K1(A). These groups reflect a great deal of the structure of
A, and they have a number of remarkable properties. Unfortunately, the
subject of K-theory can be rather technical (in fact entire books [47, 37]
have been written with the goal of giving the reader a mere introduction
to the subject). Therefore in this section we will give a brief description of
K-theory, survey the K-theory computations that have been accomplished
for graph algebras, and discuss how classification theorems for C∗-algebras
can be applied to graph algebras.

Definition 3.1. If A is a unital C∗-algebra, the group K0(A) is formed as
follows: For each natural number n we let ProjMn(A) be the set of projec-
tions in Mn(A). By identifying p ∈ ProjMn(A) with the projection p⊕ 0 in
ProjMn+1(A) formed by adding a row and column of zeros to the bottom
and right of p, we may view ProjMn(A) as a subset of ProjMn+1(A). With
this identification we let Proj∞(A) =

⋃∞
n=1 ProjMn(A). We define an equiv-

alence relation on Proj∞(A) by saying p ∼ q if there exists u ∈ Proj∞(A)
with p = uu∗ and q = u∗u. We let [p]0 denote the equivalence class of
p ∈ Proj∞(A). We define an addition on these equivalence classes by set-
ting [p]0 + [q]0 equal to

[(
p 0
0 q

)]
0
. With this operation of addition, the

equivalence classes of Proj∞(A) are an abelian semigroup. We define K0(A)
to be the Grothendieck group of this semigroup; that is, K0(A) is the abelian
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group of formal differences

K0(A) := {[p]0 − [q]0 : p, q ∈ Proj∞(A)}
with ([p]0 − [q]0) + ([p′]0 − [q′]0) := ([p]0 + [p′]0)− ([q]0 + [q′]0).

Definition 3.2. The group K1(A) is defined using the groups U(Mn(A)) of
unitary elements in Mn(A). We embed U(Mn(A)) into U(Mn+1(A)) by
u 7→ u ⊕ 1, where u ⊕ 1 is the matrix formed by adding a 1 to the bottom
right-hand corner and zeroes elsewhere in the right column and bottom row.
We then let U∞(A) :=

⋃∞
n=1 U(Mn(A)). We define an equivalence relation

on U∞(A) as follows: If u ∈ Um(A) and v ∈ Un(A), we write u ∼ v if there
exists a natural number k ≥ max{m,n} such that

(
u 0
0 1k−n

)
is homotopic to(

v 0
0 1k−m

)
in Uk(A) (i.e., there exists a continuous map h : [0, 1] → Uk(A)

such that h(0) =
(
u 0
0 1k−n

)
and h(1) =

(
v 0
0 1k−m

)
. We denote the equivalence

class of u ∈ U∞(A) by [u]1. We define K1(A) to be

K1(A) := {[u]1 : u ∈ U∞(A)}
with addition given by [u]1 + [v]1 := [( u 0

0 v )]1. It is true (but not obvious)
that K1(A) is an abelian group.

The K-groups K0(A) and K1(A) can also be defined when A is nonunital.
We refer the reader to [47] and [37] for these definitions as well as for details
of the definitions in the unital case.

Remark 3.3. If φ : A → B is a homomorphism between C∗-algebras, then
φ induces homomorphisms φn : Mn(A) → Mn(B) by φ((aij)) = (φ(aij)).
Since the φn’s map projections to projections and unitaries to unitaries, they
induce homomorphisms K0(φ) : K0(A) → K0(B) and K1(φ) : K1(A) →
K1(B). This process is functorial : the identity homomorphism induces the
identity map on K-groups, and Ki(φ◦ψ) = Ki(φ)◦Ki(ψ) for i = 1, 2. Thus
K0 and K1 are functors from the category of C∗-algebras to the category of
abelian groups.

Remark 3.4. An ordered abelian group (G,G+) is an abelian group G to-
gether with a distinguished subset G+ ⊆ G satisfying

(i) G+ +G+ ⊆ G+, (ii) G+ ∩ (−G+) = {0}, (iii) G+ −G+ = G.

We call G+ the positive cone of G, and it allows us to define an ordering on
G by setting g1 ≤ g2 if and only if g2 − g1 ∈ G+.

If A is a C∗-algebra, and we set

K0(A)+ := {[p]0 : p ∈ Proj∞(A)},
then (K0(A),K0(A)+) satisfies condition (i) above, but will not necessarily
satisfy (ii) and (iii). However, if A is an AF-algebra, then (K0(A),K0(A)+)
does satisfy conditions (ii) and (iii) and (K0(A),K0(A)+) is an ordered
abelian group. (More generally, if A has an approximate unit consisting of
projections, then (K0(A),K0(A)+) satisfies condition (iii), and ifA is also
stably finite then (K0(A),K0(A)+) satisfies condition (ii).)
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We shall often have to consider isomorphisms from the K-groups of a C∗-
algebra to abelian groups, and frequently we will want these isomorphisms
to preserve the ordering or take an element in theK-group to a distinguished
element in the group. Therefore we establish the following notation.

Definition 3.5. Let A be a C∗-algebra, and let G be an abelian group and
g ∈ G. If p ∈ A is a projection, then we write (K0(A), [p]0) ∼= (G, g) if
there is an isomorphism α : K0(A) → G with α([p]0) = g. If G+ ⊆ G is
a positive cone of G, then we write (K0(A),K0(A)+) ∼= (G,G+) if there
is an isomorphism α : K0(A) → G with α(K0(A)+) = G+, and we write
(K0(A),K0(A)+, [p]0) ∼= (G,G+, g) if there is an isomorphism α : K0(A) →
G with α(K0(A)+) = G+ and α([p]0) = g.

Remark 3.6. If E is a graph and v ∈ E0 is a vertex that is neither a sink
nor an infinite emitter, then pv =

∑
s(e)=v ses

∗
e, and in K0(C∗(E)) we have

[pv]0 =

 ∑
s(e)=v

ses
∗
e


0

=
∑
s(e)=v

[ses∗e]0 =
∑
s(e)=v

[s∗ese]0 =
∑
s(e)=v

[pr(e)]0.

Theorem 3.9 says, among other things, that K0(C∗(E)) is generated by the
collection {[pv]0 : v ∈ E0} and that this collection is subject only to the
above relations.

3.1. Computing K-theory. For our K-theory computation we will as-
sociate a matrix to a directed graph that will summarize the relations in
Remark 3.6.

Definition 3.7. Let E = (E0, E1, r, s) be a row-finite directed graph with no
sinks. The vertex matrix of E is the (possibly infinite) E0 × E0 matrix AE
whose entries are the non-zero integers

AE(v, w) := #{e ∈ E1 : s(e) = v and r(e) = w}.

Remark 3.8. Let E be a row-finite graph and let
⊕

E0 Z denote the direct
sum of copies of Z indexed by E0 (i.e. sequences of integers that only have
a finite number of nonzero terms). If E is row-finite, then each row of
the matrix AE contains a finite number of nonzero entries (in fact, this is
where the term row-finite come from!), and each column of the transpose AtE
contains a finite number of nonzero entries. Therefore, we have a map AtE :⊕

E0 Z →
⊕

E0 Z defined by left multiplication. (The column-finiteness of
AtE ensures that AtEx ∈

⊕
E0 Z for each x ∈

⊕
E0 Z.) If {se, pv : e ∈ E1, v ∈

E0} is a Cuntz-Krieger E-family generating C∗(E), and if we identify each
[pv]0 with the element δv ∈

⊕
E0 Z containing a 1 in the vth position and 0’s

elsewhere, then the relation in Remark 3.6 may be summarized as saying
(AtE − I)δv is equivalent to 0 for all v ∈ E0.

We are now in a position to describe how to compute the K-theory of
the C∗-algebra of a row-finite graph with no sinks. This computation was
first done in [35, Theorem 3.2]. The computation and its proof have also
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been discussed in [34, Chapter 7]. (In both cases sinks were allowed in the
graphs, but for the sake of simplicity we state the result here for row-finite
graphs without sinks.

Theorem 3.9 (K-theory for Graph Algebras: The Row-Finite, No Sinks
Case). Let E = (E0, E1, r, s) be a row-finite graph with no sinks. If AE is
the vertex matrix of E, and AtE−I :

⊕
E0 Z →

⊕
E0 Z by left multiplication,

then
K0(C∗(E)) ∼= coker(AtE − I)

via an isomorphism taking [pv]0 to [δv] for each v ∈ E0, and

K1(C∗(E)) ∼= ker(AtE − I).

Theorem 3.9 shows that to calculate the K-theory of C∗(E) for a row-
finite graph E with no sinks, we simply have to write down the matrix
AtE − I, and then calculate the cokernel and kernel of AtE − I. When E has
a finite number of vertices, this can be done very easily.

Remark 3.10 (Computing the Kernel and Cokernel of a Finite Matrix). Let
A be an m × n matrix with integer entries, and consider A : Zn → Zm by
left multiplication. By performing elementary row and column operations
to A, we may obtain an m×n matrix whose only nonzero entries are on the
diagonal and of the form

D =



d1 · · · 0
. . .

...
dk

0
...

. . .
...

0 · · · · · · 0


where d1, . . . , dk are nonzero integers with k ≤ min{m,n}. Warning: Re-
member that since we are viewing A as a map from the Z-module Zn into
the Z-module Zm, the allowed elementary row (resp. column) operations
are: (1) adding an integer multiple of one row (resp. column) to another
row (resp. column), (2) interchanging any two rows (resp. columns), (3)
multiplying an row (resp. column) by the unit 1 or the unit −1.

Since performing row operations to a matrix corresponds to postcom-
posing A with an automorphism on Zm and performing column operations
corresponds to precomposing A with an automorphism on Zm, we see that
performing row and column operations will not change the isomorphism
class of cokerA or kerA. Hence

cokerA ∼= Z/d1Z⊕ . . .Z/dkZ⊕ Z⊕ . . .⊕ Z︸ ︷︷ ︸
m−k

and
kerA ∼= Z⊕ . . .⊕ Z︸ ︷︷ ︸

n−k

.
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Example 3.11. Let E be the graph

v
��

ZZ99 whh
vv ��

xoo
ii
uu

BB

�� ��

\\

Then E is row-finite with no sinks, and the vertex matrix of this graph is
AE =

(
3 0 0
2 1 0
0 3 4

)
and AtE − I =

(
2 2 0
0 0 3
0 0 3

)
. One can perform elementary row and

column operations on AtE − I to obtain
(

2 0 0
0 3 0
0 0 0

)
, and therefore

K0(C∗(G)) ∼= Z/2Z⊕ Z/3Z⊕ Z and K1(C∗(G)) ∼= Z.
When a graph has an infinite number of vertices, the matrix AtE−I will be

infinite, so we cannot use the method described in Remark 3.10 to calculate
the kernel and cokernel. However, in many situations, it is still possible to
deduce what these groups are, as the following example shows.

Example 3.12. Let E be the graph

v1
��

EE
v2oo v3oo v4oo · · ·oo

Then E is row-finite with no sinks, and the vertex matrix of this graph is

AE =

( 2 0 0 0 ···
1 0 0 0
0 1 0 0
...

. . .

)
and AtE − I =

 1 1 0 0 ···
0 −1 1 0
0 0 −1 1
...

. . .

. We see that an element( x1
x2

...

)
∈
⊕∞

i=1 Z is in the kernel of AtE − I if an only if the equations

x1 + x2 = 0, x2 − x3 = 0, x3 − x4 = 0, . . .

are satisfied. Since the xi’s are eventually zero this implies that x1 = x2 =

. . . = 0. Thus K1(C∗(E)) = ker(AtE − I) = 0. In addition, if ~y =
( y1
y2
...

)
∈⊕∞

i=1 Z, then from some n we have yi = 0 for i ≥ n, and we see that

~x :=


y1+...+yn
−y2−...−yn
−y3−...−yn

...
−yn

0
...

 ∈
⊕∞

i=1 Z. Since (AtE − I)~x = ~y we see that AtE − I is

surjective, and K0(C∗(E)) = coker(AtE − I) = 0.

Having seen how to calculate K-theory in the case of a row-finite graph
with no sinks, we now turn our attention to arbitrary graphs. In [39,
Proposition 2] the K-theory computation for graph algebras was extended
to non-row-finite graphs with a finite number of vertices. Additionally, in
[8, Theorem 3.1] desingularization was used to extend Theorem 3.9 to all
non-row-finite graphs. We present this result here.
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Theorem 3.13 (K-theory for Graph Algebras: The General Case). Let
E = (E0, E1, r, s) be a graph. Also let J be the set vertices of E that are
either sinks or infinite emitters, and let I := E0\J . Then with respect to
the decomposition E0 = I ∪ J the vertex matrix of E will have the form

AE =
(
B C
∗ ∗

)
where B and C have entries in Z and the ∗’s have entries in Z ∪ {∞}. If

we let
(
Bt − I
Ct

)
:
⊕

I Z →
⊕

I Z⊕
⊕

J Z by left multiplication, then

K0(C∗(E)) ∼= coker
(
Bt − I
Ct

)
via an isomorphism taking [pv]0 to [δv] for each v ∈ E0, and

K1(C∗(E)) ∼= ker
(
Bt − I
Ct

)
.

Note that for a graph with a finite number of vertices, the matrix
(
Bt − I
Ct

)
will be finite and the method described in Remark 3.10 can be used to cal-
culate the K-theory.

Example 3.14. Let E be the graph

v //

��

w rr

x
(∞)

// y

(∞)

OO

Then x and y are infinite emitters, and AE =
(

0 1 1 0
0 1 0 0
0 0 0 ∞
0 ∞ 0 0

)
, so that B = ( 0 1

0 1 )

and C = ( 1 0
0 0 ). Thus

(
Bt − I
Ct

)
=
(−1 0

1 0
1 0
0 0

)
: Z2 → Z4. By performing ele-

mentary row and column operations to this matrix we obtain
(

1 0
0 0
0 0
0 0

)
. Thus

K0(C∗(E)) ∼= coker
(
Bt − I
Ct

)
∼= Z3 and K1(C∗(E)) ∼= ker

(
Bt − I
Ct

)
∼= Z.

Remark 3.15 (The K-groups of graph algebras). Suppose that E is a graph.
The calculation of K-theory described in Theorem 3.13 has the following
implications.

• For any graph E, the group K1(C∗(E)) is free. This follows from the

fact that
⊕

I Z is a free group, and K1(C∗(E)) ∼= ker
(
Bt − I
Ct

)
is a

subgroup of this free group, and therefore also free. Remarkably, this
is the only restriction on the K-theory; in fact, Szymański has shown
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in [40] that if G0 and G1 are countably generated abelian groups with
G1 free, then there exists a row-finite, transitive graph E such that
K0(C∗(E)) ∼= G0 and K1(C∗(E)) ∼= G1. (Warning: In some of the
graph algebra literature the word free has been mistakenly replaced
by torsion-free. Recall that while these two notions are the same for
finitely generated abelian groups, for countably generated abelian
groups the free groups are a proper class of the torsion-free groups;
for example, the additive group Q is a countably generated abelian
group that is torsion-free but not free.)

• If E is a finite graph with no sinks, then all the K-theory information
of C∗(E) is contained in K0(C∗(E)). In particular, the following
hold:
(1) the K-groups of C∗(G) are finitely generated
(2) K1(C∗(G)) is a free group
(3) K0(C∗(G)) ∼= T ⊕K1(C∗(G)) for some finite torsion group T

Consequently, if E1 and E2 are finite graphs, then K0(C∗(E1)) ∼=
K0(C∗(E2)) implies that K1(C∗(E1)) ∼= K1(C∗(E2)).

• If E is a graph that has a finite number of vertices (but possibly an
infinite number of edges), then rankK0(C∗(E)) ≥ rankK1(C∗(E)).
The reason for this is that Theorem 3.13 gives the short exact se-
quence:

0 −→ K1(C∗(G)) −→ ZI −→ ZI ⊕ ZJ −→ K0(C∗(G)) −→ 0

and since I and J are finite we have rankK0(C∗(G)) ≥ rankK1(C∗(G)).
• If E is a graph in which every vertex is either a sink or an infinite

emitter, then K0(C∗(E)) ∼=
⊕

E0 Z and K1(C∗(E)) ∼= 0. This is
because the set I described in Theorem 3.13 is empty so

⊕
I Z = 0.

In addition to the vertex matrix, one may also use the edge matrix to
calculate the K-theory of a graph algebra.

Definition 3.16. Let E = (E0, E1, r, s) be a row-finite directed graph with
no sinks. The edge matrix of E is the (possibly infinite) E1×E1 matrix BE
whose entries are

BE(e, f) :=

{
1 if r(e) = s(f)
0 otherwise.

Note that if E is row-finite, then any row of BE will have at most a
finite number of nonzero entries. Thus we have a well-defined map Bt

E − I :⊕
E1 Z →

⊕
E1 Z given by left multiplication.

Proposition 3.17. If E is a row-finite graph with no sinks, and we let AtE−
I :
⊕

E0 Z →
⊕

E0 Z and Bt
E − I :

⊕
E1 Z →

⊕
E1 Z by left multiplication,

then

coker(AtE − I) ∼= coker(Bt
E − I) and ker(AtE − I) ∼= ker(Bt

E − I).
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Proof. Let S denote the E0 × E1 matrix defined by

S(v, e) :=

{
1 if s(e) = v

0 otherwise.

Also let R denote the E1 × E0 matrix defined by

R(e, v) :=

{
1 if r(e) = v

0 otherwise.

Then we see that
SR = AE and RS = BE

and

(3.1) RtSt = AtE and StRt = Bt
E .

We define a map from coker(AtE− I) → coker(Bt
E− I) by x+im(AtE− I) 7→

Stx + im(Bt
E − I). This is well-defined because if x + im(AtE − I) = y +

im(AtE − I), then x− y = (AtE − I)z for some z and

Stx− Sty = St(x− y) = St(AtE − I)z = (Bt
ES

t − St)z = (Bt − I)Stz

so Stx + im(Bt
E − I) = Sty + im(Bt

E − I). In a similar manner we may
define a map from coker(Bt

E − I) → coker(AtE − I) by x + im(Bt
E − I) 7→

Rtx+im(AtE−I). We see that these maps are inverses of each other because

RtStx+ im(AtE − I) = AtEx+ im(AtE − I)

= [x+ (AtE − I)x] + im(AtE − I) = x+ im(AtE − I)

and

StRtx+ im(Bt
E − I) = Bt

Ex+ im(Bt
E − I)

= [x+ (Bt
E − I)x] + im(Bt

E − I) = x+ im(Bt
E − I).

Thus coker(AtE − I) ∼= coker(Bt
E − I).

In addition, we may define a map from ker(AtE − I) to ker(Bt
E − I) by

x 7→ Stx. We see that this map takes values in ker(Bt
E − I), because if

x ∈ ker(At − I) then

(Bt
E − I)Stx = (StAtE − St)x = St(AtE − I)x = 0.

Similarly, we may define a map from ker(Bt
E−I) to ker(AtE−I) by x 7→ Rtx.

We see that these maps are inverses of each other because if x ∈ ker(AtE−I),
then

RtStx = AtEx = x+ (AtE − I)x = x

and if x ∈ ker(Bt
E − I), then

StRtx = Bt
Ex = x+ (Bt

E − I)x = x.

Thus ker(AtE − I) ∼= ker(Bt
E − I). �

The above proposition together with Theorem 3.9 gives the following.
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Proposition 3.18. Let E = (E0, E1, r, s) be a row-finite graph with no
sinks. If BE is the edge matrix of E, and Bt

E − I :
⊕

E1 Z →
⊕

E1 Z by left
multiplication, then

K0(C∗(E)) ∼= coker(Bt
E − I)

via an isomorphism taking [pv]0 to
∑

s(e)=v[δe] for each v ∈ E0, and

K1(C∗(E)) ∼= ker(Bt
E − I).

Remark 3.19. Theorem 3.9 and Proposition 3.18 show that when E is a
row-finite graph with no sinks, then to calculate the K-theory of C∗(E) we
may use either the vertex matrix AE or the edge matrix BE . In certain
situations, one of these matrices may be easier to use than the following:
The edge matrix has the advantage that all its entries are in {0, 1} and this
simplifies row and column operations. However, the edge matrix has the
disadvantage that it is typically much larger than the vertex matrix.

Remark 3.20. In addition to computing the isomorphism classes of the K-
groups of a graph algebra, one often wants to compute the ordering on
K0(C∗(E)). When E is a row-finite graph (possibly with sinks) it follows
from [45, Lemma 2.1] that if E is row-finite (but possibly has sinks), then
the isomorphism described in Theorem 3.13 takes K0(C∗(E))+ to {[x] : x ∈⊕

I N⊕
⊕

J N}, where [x] denotes the class of x in coker
(
Bt − I
Ct

)
. If E is

not row-finite, then [45, Theorem 2.2] shows that the isomorphism described

in Theorem 3.13 takes K0(C∗(E))+ onto the semigroup of coker
(
Bt − I
Ct

)
generated by the set

{[δv] : v ∈ E0} ∪ {[δv]−
∑
e∈S

[δr(e)] : v is an infinite emitter and S

is a finite subset of s−1(v)}.

Remark 3.21. We conclude by commenting that Ext, the dual theory for
K-theory, has also been computed for C∗-algebras of graph satisfying Con-
dition (L). This was done for row-finite graph algebras in [42, Theorem 5.16]
and arbitrary graph algebras in [8, Theorem 3.1]. Specifically, if AE = (B C

∗ ∗ )
is the decomposition described in Theorem 3.13, then (B − I C) :

∏
I Z ⊕∏

J Z →
∏
I Z defines a mapping by left multiplication and Ext(C∗(E)) ∼=

coker(B − I C). (Note that the domain and codomain of this map involve
direct products rather than direct sums.)

3.2. Classification Theorems. One wants to calculate the K-theory of a
C∗-algebra because it provides an invariant. K-theory can always be used to
tell if two C∗-algebras are different: If two C∗-algebras have non-isomorphic
K-theory, for example, then those C∗-algebras are not Morita equivalent
(and hence also not isomorphic). More importantly, in certain situations
K-theory can be used to tell when C∗-algebras are the same.
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Elliott has conjectured that all nuclear C∗-algebras can be classified by
K-theoretic information, which is now called the Elliott invariant. (For a
general nuclear C∗-algebra the Elliott invariant involves K-theoretic infor-
mation beyond the K0 and K1 groups that we have not discussed. However,
for the classes of C∗-algebras we consider, the invariant will only involve the
ordered K0-group and the K1-group.) The Elliott conjecture has been veri-
fied in a number of special cases, including AF-algebras and certain simple
purely infinite C∗-algebras. Using these results we shall describe how all
simple graph algebras are classified by their K-theory, and we shall give an
algorithm for determining whether two simple graph algebras are isomorphic
and whether they are Morita equivalent.

3.2.1. AF-algebras. If A is an AF-algebra, then K1(A) = 0. Hence all the
K-theoretic information of A is contained in the group K0(A). The AF-
algebras were one of the first class of C∗-algebras to be classified by K-
theory, and this was done by Elliott in the 1970’s [10]. It was this success
that inspired Elliott to conjecture that wider classes of C∗-algebras can be
classified by K-theoretic information.

The following theorem appears in most books on operator algebra K-
theory; see, for instance, [47, Theorem 12.1.3].

Theorem 3.22 (Elliott’s Theorem). Let A and B be AF-algebras. Then A
and B are Morita equivalent if and only if (K0(A),K0(A)+) ∼= (K0(B),K0(B)+).
That is, the ordered K0-group is a complete Morita equivalence invariant for
AF-algebras.

If A and B are both unital, then A and B are isomorphic if and only
if (K0(A),K0(A)+, [1A]0) ∼= (K0(B),K0(B)+, [1B]0). That is, the ordered
K0-group together with the position of the unit is a complete isomorphism
invariant for AF-algebras.

Remark 3.23. If E is a graph with no loops, then as described in Re-
mark 1.26, C∗(E) is an AF-algebra. Using Theorem 3.13 and Remark 3.20,
we can calculate (K0(C∗(E)),K0(C∗(E))+) and determine the Morita equiv-
alence class of C∗(E).

Remark 3.24. Although Theorem 3.22 only talks of the Morita equivalence
class of nonunital AF-algebras, the isomorphism class of a nonunital AF-
algebra is also determined by K-theoretic information. As described in
[47, Theorem 12.1.3] if A is an AF-algebra, then the scaled ordered group
(K0(A),K0(A)+, D(A)) is a complete isomorphism invariant of A. We have
not discussed the scale D(A) := {[p]0 : p ∈ Proj(A)} of the K0-group
because the author does not know of an easy way to calculate it for graph
algebras, and so it does not fit easily into our current discussion. However,
when A is unital, the scale D(A) may be replaced by the position of the
class of the unit in the K0, as described in our statement of Theorem 3.22.

3.2.2. Kirchberg-Phillips Algebras. In addition to AF-algebras, certain sim-
ple purely infinite C∗-algebras have been classified by their K-theory. This
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result is known as the Kirchberg-Phillips Classification Theorem, and was
proven independently by Kirchberg and Phillips using different methods.
Phillips’ result appears in [32]. Kirchberg’s version is not yet published,
but a preliminary account, including proofs of his “Geneva Theorems” and
partial proofs of his version of the classification theorem, was circulated in
1994.

Theorem 3.25. Let A and B be purely infinite, simple, separable, nuclear
C∗-algebras that satisfy the Universal Coefficients Theorem.

(1) If A and B are both unital, then A is isomorphic to B if and only if
(K0(A), [1A]0) ∼= (K0(B), [1B]0) and K1(A) ∼= K1(B).

(2) If A and B are nonunital, then A is isomorphic to B if and only if
K0(A) ∼= K0(B) and K1(A) ∼= K1(B).

Remark 3.26. Let K denote the compact operators on a separable infinite-
dimensional Hilbert space. We say that a C∗-algebra is stable if A⊗K ∼= A.
For any C∗-algebra, we see that A ⊗ K will be stable because K ⊗ K ∼= K.
We call A ⊗ K the stabilization of A. The stabilization of a C∗-algebra is
always nonunital, and both pure infiniteness and AF-ness are preserved by
stabilization. In addition, K0(A⊗K) ∼= K0(A) and K1(A⊗K) ∼= K1(A).

The Brown-Green-Rieffel Theorem asserts that two separable C∗-algebras
A and B are Morita equivalent if and only if A⊗K ∼= B ⊗K. Furthermore,
Zhang’s dichotomy [48] says that all separable, nonunital purely infinite
C∗-algebras are stable, and thus all separable, nonunital purely infinite C∗-
algebras are Morita Equivalent if and only if they are isomorphic.

Using these facts, the Kirchberg-Phillips Classification Theorem gives the
following.

Corollary 3.27. Let A and B be purely infinite, simple, separable, nuclear
C∗-algebras that satisfy the Universal Coefficients Theorem. Then three
cases can occur.
Case 1: A and B are both unital.

Then A and B are isomorphic if and only if (K0(A), [1A]0) ∼= (K0(B), [1B]0)
and K1(A) ∼= K1(B). In addition, A and B are Morita equivalent if and only
if K0(A) ∼= K0(B) and K1(A) ∼= K1(B), and in this case A⊗K ∼= B ⊗K.
Case 2: A and B are both nonunital.

Then A and B are isomorphic if and only if K0(A) ∼= K0(B) and K1(A) ∼=
K1(B). In addition, A and B are Morita equivalent if and only if A and B
are isomorphic.
Case 3: One of A and B is nonunital and the other is unital.

Suppose A is nonunital and B is unital. Then A and B are not isomor-
phic, and A and B are Morita equivalent if and only if K0(A) ∼= K0(B) and
K1(A) ∼= K1(B), in which case A ∼= B ⊗K.

3.2.3. Graph Algebras. To apply these classifications to graph algebras, we
first consider when a graph algebra will satisfy the hypotheses of Theo-
rem 3.25. To begin, we see that all graph algebras are separable since they
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are generated by the countable collection {se, pv : e ∈ E1, v ∈ E0}. In ad-
dition, it is shown in [26, Proposition 2.6] that for any directed graph E
the crossed product C∗(E)×α T is an AF-algebra. (The proof in [26] is for
row-finite graphs, but it should hold for arbitrary graphs as well.) Therefore
from the Takesaki-Takai duality theorem (see [31, Theorem 7.9.3]) one has

C∗(E)⊗K(L2(T)) ∼= (C∗(E)×α T)×α̂ Z

and hence C∗(E) is stably isomorphic to the crossed product of an AF-
algebra by Z. It then follows from [4, Corollary 3.2] and [5, Proposition 6.8]
that C∗(E) is nuclear, and it follows from [38, Theorem 1.17] and [3, Chap-
ter 23] that C∗(E) satisfies the UCT. Hence the Kirchberg-Phillips Classifi-
cation Theorem applies to any purely infinite simple graph algebra.

Moreover, if E = (E0, E1, r, s) is a graph, then C∗(E) is unital if and
only if E0 is finite. When E0 is finite, one can easily check that the Cuntz-
Krieger relations imply that 1 =

∑
v∈E0 pv is a unit for C∗(E). Note that

the isomorphisms in Theorem 3.9 and Theorem 3.13 take [1]0 to the element 1
1
1
.
.
.

 in the appropriate cokernel.

Since the dichotomy for simple graph algebras given in Proposition 2.15
implies that all simple graph algebras are either AF or purely infinite (de-
pending on whether or not the graph has a loop), we may use Theorem 3.22,
Theorem 3.25, and Corollary 3.27 to classify simple graph algebras. We
summarize the implications of these results here.

Theorem 3.28 (Classification of Simple Graph Algebras). Let E and F
be graphs, and suppose that C∗(E) and C∗(F ) are simple (characterized for
row-finite graphs in Theorem 1.23 and for arbitrary graphs in Theorem 2.12).
Then there are three possible cases.

Case 1: Both E and F have no loops.

Then C∗(E) and C∗(F ) are AF, and C∗(E) and C∗(F ) are Morita equiv-
alent if and only if (K0(C∗(E)),K0(C∗(E))+) ∼= (K0(C∗(F )),K0(C∗(F ))+),
in which case C∗(E)⊗K ∼= C∗(F )⊗K.

Furthermore, if A and B are unital, then C∗(E) ∼= C∗(F ) if and only if
(K0(C∗(E)),K0(C∗(E))+, [1C∗(E)]0) ∼= (K0(C∗(F )),K0(C∗(F ))+, [1C∗(F )]0).

Case 2: Both E and F each have at least one loop.
Then C∗(E) and C∗(F ) are purely infinite and there are three subcases.

(i) If E0 and F 0 are both finite, then C∗(E) ∼= C∗(F ) if and only if
(K0(C∗(E)), [1C∗(E)]0) ∼= (K0(C∗(F )), [1C∗(F )]0) and K1(C∗(E)) ∼=
K1(C∗(F )). Furthermore, C∗(E) and C∗(F ) are Morita equivalent if
and only if K0(C∗(E)) ∼= K0(C∗(F )) and K1(C∗(E)) ∼= K1(C∗(F )),
in which case C∗(E)⊗K ∼= C∗(F )⊗K.
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(ii) If E0 and F 0 are both infinite, then C∗(E) ∼= C∗(F ) if and only
if K0(C∗(E)) ∼= K0(C∗(F )) and K1(C∗(E)) ∼= K1(C∗(F )). In ad-
dition, C∗(E) and C∗(F ) are isomorphic if and only if C∗(E) and
C∗(F ) are Morita equivalent.

(iii) If one of E0 and F 0 is infinite and the other is finite (let us say E0 is
infinite and F 0 is finite), then C∗(E) and C∗(F ) are not isomorphic.
In addition C∗(E) and C∗(F ) are Morita equivalent if and only if
K0(C∗(E)) ∼= K0(C∗(F )) and K1(C∗(E)) ∼= K1(C∗(F )) in which
case C∗(E) ∼= C∗(F )⊗K.

Case 3: One of E and F has at least one loop and the other has
no loops.

Then one of C∗(E) and C∗(F ) is purely infinite while the other is an AF-
algebra. Hence C∗(E) and C∗(F ) are not Morita equivalent (and therefore
also not isomorphic).

Remark 3.29. Notice that in Case 1 we did not give sufficient conditions for
C∗(E) and C∗(F ) to be isomorphic when C∗(E) and C∗(F ) are nonunital.
This is the only case missing from the above theorem, and if we were able
to describe the scale of the K0-group of a graph algebra, then as described
in Remark 3.24 we would have a complete description.

When calculating the K-theory of a unital graph algebra C∗(E), we need

to calculate the kernel and cokernel of the finite matrix
(
Bt − I
Ct

)
:
⊕

I Z →⊕
I Z⊕

⊕
J Z, but in addition, we need to keep track of the position of the

unit

 1
1
1
.
.
.

.

Remark 3.30 (Computing the Position of the Unit). This remark is a follow-
up to Remark 3.10. If A is an m × n matrix and A : Zn → Zm by left
multiplication, then as described in Remark 3.10 we may perform elementary
row and column operations on A to form a matrix D whose only nonzero
entries d1, . . . , dk are on the diagonal. Since performing elementary row
operations (resp. column operations) corresponds to multiplying A on the
left (resp. right) by an elementary matrix, by keeping track of the row and
column operations, we may write MAN = D for some invertible matrices
M and N . Since M and N are invertible, we see that kerA ∼= kerD =
Z⊕ . . .⊕ Z︸ ︷︷ ︸

n−k

. We also see that cokerA ∼= cokerD = Z/d1Z ⊕ . . .Z/dkZ ⊕

Z⊕ . . .⊕ Z︸ ︷︷ ︸
m−k

and that this isomorphism takes the class x+ imA ∈ cokerA to

the class M−1x+ imD ∈ cokerD.

We now consider some examples which make use of Theorem 3.28.

Example 3.31. Let E and F be the following graphs.
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Then C∗(E) and C∗(F ) are simple and purely infinite, and the graphs fall
into Case 2(i) of Theorem 3.28. We see that AF = (4), and

AtF − I = (3) : Z → Z.

Thus we have (K0(C∗(F )), [1C∗(F )]0) ∼= (Z3, [1]) and K1(C∗(E)) = 0.

Furthermore, AE =
(

3 1
1 3

)
and AtE − I =

(
2 1
1 2

)
: Z2 → Z2. We shall

now reduce this matrix to a diagonal matrix, keeping track of the row and
column operations that we use.

(
2 1
1 2

)
∼
(

2 1
−3 0

)
(−2 times Row 1 added to Row 2)

∼
(

0 1
−3 0

)
(−2 times Column 2 added to Column 1)

∼
(
−3 0
0 1

)
(Exchange Row 1 and Row 2)

∼
(

3 0
0 1

)
(−1 times Column 1)

Since row operations correspond to multiplying on the left by the associ-
ated elementary matrices, and column operations correspond to multiplying
on the right by the associated elementary matrices, we have(

0 1
1 0

)(
1 0
−2 1

)(
2 1
1 2

)(
1 0
−2 1

)(
−1 0
0 1

)
=
(

3 0
0 1

)
and if we letM =

(
0 1
1 0

)(
1 0
−2 1

)
=
(
−2 1
1 0

)
, andN =

(
1 0
−2 1

)(
−1 0
0 1

)
=(

−1 0
2 1

)
, then M

(
2 1
1 2

)
N =

(
3 0
0 1

)
.

Thus we see that coker(AtE − I) ∼= Z3 ⊕ 0 and since M−1 =
(

0 1
1 2

)
we

have

M−1

(
1
1

)
+ im

(
3 0
0 1

)
=
(

1
3

)
+ im

(
3 0
0 1

)
=
(

1
0

)
+ im

(
3 0
0 1

)
.

Thus (K0(C∗(E)), [1C∗(E)]0) ∼= (Z3, [1]) and K1(C∗(E)) = 0.
It follows that C∗(E) ∼= C∗(F ).
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Remark 3.32. Notice that although we were able to determine that C∗(E) ∼=
C∗(F ) in Example 3.31, we have no idea what the isomorphism is (since the
Kirchberg-Phillips Classification Theorem only tells us of the existence of the
isomorphism between C∗-algebras). It would be interesting, and possibly dif-
ficult, to show how in situations such as this one can exhibit a Cuntz-Krieger
E-family in C∗(F ), so that the isomorphism may be described explicitly.

Example 3.33. Let E be the graph in Example 3.12, and let F be the graph

v99 ee

Then C∗(E) and C∗(F ) are simple and purely infinite, and the graphs fall
into Case 2(iii) of Theorem 3.28. We see that AF = (2), and

AtF − I = (1) : Z → Z.

Thus we have K0(C∗(F )) = 0 and K1(C∗(F )) = 0. Since it was shown
in Example 3.12 that K0(C∗(E)) = 0 and K1(C∗(E)) = 0, we have that
C∗(F ) ∼= C∗(E)⊗K.

Moreover, since we know that C∗(E) is the Cuntz algebra O2, we have
that C∗(F ) ∼= O2 ⊗K so that C∗(F ) is the stabilization of O2.

We conclude this section by discussing which AF-algebras and which
Kirchberg-Phillips algebras arise as graph algebras.

It was shown in [6] and [46] that every AF-algebra is Morita equivalent
to a graph algebra. In addition, it is known that there are AF-algebras that
are not isomorphic to any graph algebra.

With regards to the Kirchberg-Phillips algebras, Szymański has proven
the following in [40, Theorem 1.2].

Theorem 3.34. Let G0 and G1 be countable abelian groups with G1 free. If
g ∈ G0, then there is a row-finite, transitive graph E with an infinite number
of vertices, and a vertex v ∈ E0 such that (K0(C∗(E)), [pv]0) ∼= (G0, g) and
K1(C∗(E)) ∼= G1.

The proof of Szymański’s theorem is very concrete, and in fact he de-
scribes how to construct the graph E from (G0, g) and G1. Also, note that
if E is a row-finite, transitive graph with an infinite number of vertices, then
C∗(E) is simple, purely infinite, and nonunital.

The Kirchberg-Phillips Classification Theorem then gives the following
two corollaries.

Corollary 3.35. Let A be a purely infinite, simple, separable, nonunital, nu-
clear C∗-algebra that satisfies the Universal Coefficient Theorem. If K1(A)
is free, then A is isomorphic to the C∗-algebra of a row-finite, transitive
graph.

Corollary 3.36. Let A be a purely infinite, simple, separable, unital, nuclear
C∗-algebra that satisfies the Universal Coefficient Theorem. If K1(A) is
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free, then A is isomorphic to a full corner of the C∗-algebra of a row-finite,
transitive graph.

Proof. Choose a row-finite, transitive graph E and a vertex v such that
(K0(C∗(E)), [pv]0) ∼= (K0(A), [1A]0) and K1(C∗(E)) ∼= K1(A). If we con-
sider the corner pvC∗(E)pv, then since C∗(E) is simple, we see that this cor-
ner is full. Hence pvC∗(E)pv is Morita equivalent to C∗(E), and pvC∗(E)pv
is purely infinite, simple, separable, nuclear, and satisfies the Universal Co-
efficient Theorem. Furthermore, the projection pv is a unit for pvC∗(E)pv,
and since the inclusion of pvC∗(E)pv into C∗(E) preserves K-theory [30,
Proposition 1.2], we have that (K0(pvC∗(E)pv), [pv]0) ∼= (K0(A), [1A]0) and
K1(pvC∗(E)pv) ∼= K1(A). Thus pvC∗(E)pv ∼= A. �

4. Generalizations of Graph Algebras

Since the introduction of graph algebras, various authors have considered
a myriad of generalizations in which a C∗-algebra is associated to an object
other than a directed graph. In particular generalizations this object may
be a matrix, a Hilbert C∗-module, or something more exotic. The goal in
these generalizations is to produce a class of C∗-algebras with the following
properties:

(1) the class includes graph algebras in a natural way, as well as C∗-
algebras that are not graph algebras; and

(2) for each C∗-algebra in the class, the structure of the C∗-algebra is
reflected in the object from which it is created.

In this section, we will discuss some of the generalizations which have
become prominent in the literature in the past few years. Because each of
these classes has been the subject of many papers, a complete description
of each of the theories and their developments is beyond our scope. Instead,
we will simply attempt a whirlwind survey of a handful of important classes.
In each case, our goal will be to

(1) define the basic objects that will be used in place of directed graphs,
and discuss how a C∗-algebra can be constructed from such an ob-
ject,

(2) explain how graph algebras are special cases of these C∗-algebras,
and

(3) compare and contrast the theory for these C∗-algebras to the theory
for graph C∗-algebras.

We will consider four classes of C∗-algebras that generalize graph alge-
bras: Exel-Laca algebras, ultragraph algebras, Cuntz-Pimsner algebras, and
topological quiver algebras.

4.1. Exel-Laca Algebras. The Exel-Laca algebras, which were introduced
in [12], can be thought of as Cuntz-Krieger algebras for infinite matrices.
The idea is that one begins with a countable square matrix A with entries
in {0, 1}. One then defines the Exel-Laca algebra OA to be the C∗-algebra
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generated by partial isometries (one for each row) satisfying relations deter-
mined by A. These relations are meant to generalize the relations used to
define a Cuntz-Krieger algebra (and when A is finite, they reduce to pre-
cisely these relations). The difficulty comes in defining the relations when
A is not row-finite.

Definition 4.1 (Exel-Laca). Let I be a countable set and letA = {A(i, j)i,j∈I}
be a {0, 1}-matrix over I with no identically zero rows. The Exel-Laca al-
gebra OA is the universal C∗-algebra generated by partial isometries {si :
i ∈ I} with commuting initial projections and mutually orthogonal range
projections satisfying s∗i sisjs

∗
j = A(i, j)sjs∗j and

(4.1)
∏
x∈X

s∗xsx
∏
y∈Y

(1− s∗ysy) =
∑
j∈I

A(X,Y, j)sjs∗j

whenever X and Y are finite subsets of I such that the function

j ∈ I 7→ A(X,Y, j) :=
∏
x∈X

A(x, j)
∏
y∈Y

(1−A(y, j))

is finitely supported.

To understand where this last relation comes from, notice that combi-
nations of formal infinite sums obtained from the original Cuntz-Krieger
relations could give relations involving finite sums, and (4.1) says that these
finite relations must be satisfied in OA; see the introduction of [12] for more
details.

Although there is reference to a unit in (4.1), this relation applies to
algebras that are not necessarily unital, with the convention that if a 1 still
appears after expanding the product in (4.1), then the relation implicitly
states that OA is unital. It is also important to realize that the relation
(4.1) also applies when the function j 7→ A(X,Y, j) is identically zero. This
particular instance of (4.1) is interesting in itself so we emphasize it by
stating the associated relation separately:

(4.2)
∏
x∈X

s∗xsx
∏
y∈Y

(1− s∗ysy) = 0

whenever X and Y are finite subsets of I such that A(X,Y, j) = 0 for every
j ∈ I.

Remark 4.2. If E is a graph with no sinks or sources, then C∗(E) is an
Exel-Laca algebra. In fact, it is shown in [14, Proposition 9] that if E has
no sinks or sources, and if {se, pv : e ∈ E1, v ∈ E0} is a Cuntz-Krieger
E-family, then {se : e ∈ E1} is a collection of partial isometries satisfying
the relations defining OBE , where BE is the edge matrix of E.

Not all graph algebras are Exel-Laca algebras; there are examples of
graphs with sinks, and other examples of graphs with sources, whose C∗-
algebras are not isomorphic to any Exel-Laca algebra.
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There is a Cuntz-Krieger Uniqueness Theorem for Exel-Laca algebras. If
A is a countable square matrix over I with entries in {0, 1}, then we define
a directed graph Gr(A), by letting the vertices of this graph be I, and then
drawing an edge from i to j if and only if A(i, j) = 1.

The following theorem is an equivalent reformulation of [12, Theorem 13.1].

Theorem 4.3 (Cuntz-Krieger Uniqueness Theorem). Let I be a countable
set and let A = {A(i, j)i,j∈I} be a {0, 1}-matrix over I with no identically
zero rows. If Gr(A) satisfies Condition (L), and if ρ : OA → B is a ∗-
homomorphism between C∗-algebras with the property that ρ(Si) 6= 0 for all
i ∈ I, then ρ is injective.

The graph Gr(A) is also useful in describing pure infiniteness of Exel-Laca
algebras. It is shown in [12, Theorem 16.2] that every nonzero hereditary
subalgebra of OA contains an infinite projection if and only if Gr(A) satisfies
Condition (L) and every vertex in Gr(A) can reach a loop in Gr(A).

Simplicity for Exel-Laca algebras is more complicated. Exel and Laca
showed in [12, Theorem 14.1] that if Gr(A) is transitive and not a single loop,
then OA is simple. A complete characterization of simplicity was obtained
by Szymański in [41], where he defined a notion of saturated hereditary
subset for A, and proved that OA is simple if and only if Gr(A) satisfies
Condition (L) and A has no proper nontrivial saturated hereditary subsets.
(We mention that there are examples of a matrix A such that OA is simple,
but C∗(Gr(A)) is not simple!) Szymański’s result can also be used to show
that the dichotomy holds for simple Exel-Laca algebras: every simple Exel-
Laca algebra is either AF or purely infinite.

In addition, the universal property of OA gives a gauge action γ : T →
AutOA with γz(Si) = zSi, and there is a gauge-invariant uniqueness theo-
rem for Exel-Laca algebras. Exel and Laca also calculate the K-theory of
OA in [13].

4.2. Ultragraph Algebras. One difficulty with Exel-Laca algebras is that
the matrix A lacks the visual appeal one finds in a graph. In fact when
describing appropriate version of graph notions, such as Condition (L) or
vertices being able to reach loops, one introduces an associated graph Gr(A).
However, as we saw in our description of simplicity, the graph Gr(A) does
not fully reflect the structure of OA. In addition, when working with Exel-
Laca algebras one must deal with complicated relations among generators,
such as in (4.1), which again lack the visual appeal of graph algebras.

An attempt to study Exel-Laca algebras using a generalized notion of a
graph, called an “ultragraph”, was undertaken in [43] and [44]. Roughly
speaking, an ultragraph is a directed graph in which the range of an edge is
allowed to be a set of vertices rather than a single vertex.

Definition 4.4. An ultragraph G = (G0,G1, r, s) consists of a countable set
of vertices G0, a countable set of edges G1, and functions s : G1 → G0 and
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r : G1 → P (G0), where P (G0) denotes the collection of nonempty subsets
of G0.

Remark 4.5. Note that a graph may be viewed as a special type of ultragraph
in which r(e) is a singleton set for each edge e.

Example 4.6. A convenient way to draw ultragraphs is to first draw the set
G0 of vertices, and then for each edge e ∈ G1 draw an arrow labeled e from
s(e) to each vertex in r(e). For instance, the ultragraph given by

G0 = {v, w, x} s(e) = v s(f) = w s(g) = x

G1 = {e, f, g} r(e) = {v, w, x} r(f) = {x} r(g) = {v, w}
may be drawn as

v

e

-- e //

e

  
AA

AA
AA

A w

f

��
x

g

VV

g

WW

We then identify any arrows with the same label, thinking of them as being
a single edge. Thus in the above example there are only three edges, e, f ,
and g, despite the fact that there are six arrows drawn.

A vertex v ∈ G0 is called a sink if |s−1(v)| = 0 and an infinite emitter if
|s−1(v)| = ∞.

For an ultragraph G = (G0,G1, r, s) we let G0 denote the smallest sub-
collection of the power set of G0 that contains {v} for all v ∈ G0, contains
r(e) for all e ∈ G1, and is closed under finite intersections and finite unions.
Roughly speaking, the elements of {v : v ∈ G0} ∪ {r(e) : e ∈ G1} play the
role of “generalized vertices” and G0 plays the role of “subsets of generalized
vertices”.

Definition 4.7. If G is an ultragraph, a Cuntz-Krieger G-family is a collection
of partial isometries {se : e ∈ G1} with mutually orthogonal ranges and a
collection of projections {pA : A ∈ G0} that satisfy

(1) p∅ = 0, pApB = pA∩B, and pA∪B = pA+ pB − pA∩B for all A,B ∈ G0

(2) s∗ese = pr(e) for all e ∈ G1

(3) ses∗e ≤ ps(e) for all e ∈ G1

(4) pv =
∑

s(e)=v ses
∗
e whenever 0 < |s−1(v)| <∞.

We define C∗(G) to be the C∗-algebra generated by a universal Cuntz-
Krieger G-family. When A is a singleton set {v}, we write pv in place of
p{v}.

When G has the property that r(e) is a singleton set for every edge e,
then G may be viewed as a graph (and, in fact, every graph arises this
way). In this case G0 is simply the finite subsets of G0, and if {se, pv} is a
Cuntz-Krieger family for the graph algebra associated to G, then by defining
pA :=

∑
v∈A pv we see that {pA, se} is a Cuntz-Krieger G-family, and thus
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the graph algebra and the ultragraph algebra for G coincide. (The details
of this argument are carried out in [43, Proposition 3.1].)

When G is an ultragraph with an edge e such that r(e) is an infinite set,
then the projection pr(e) will dominate pv for all v ∈ r(e), but pr(e) will not
be the sum of any finite collection of pv’s. It is projections such as these
that allow for ultragraph algebras that are not graph algebras.

In addition to containing all graph algebras, it is shown in [43, §4] that
all Exel-Laca algebras are ultragraphs. Furthermore, it is shown in [44] that
there are ultragraph algebras that are neither Exel-Laca algebras nor graph
algebras. Thus the ultragraph algebras provide us with a strictly larger class
than graph algebras and Exel-Laca algebras.

A path in an ultragraph G is a sequence of edges α1 . . . αn with s(αi) ∈
r(αi−1) for i = 2, 3, . . . , n

Definition 4.8. If G is an ultragraph, then a loop is a path α1 . . . αn with
s(α1) ∈ r(αn). An exit for a loop is either of the following:

(1) an edge e ∈ G1 such that there exists an i for which s(e) ∈ r(αi) but
e 6= αi+1

(2) a sink w such that w ∈ r(αi) for some i.

An exit for a loop is simply something (an edge or sink) that allows one
to avoid repeating the same sequence α1 . . . αn as one follows edges in G.
Also note that if α1 . . . αn is a loop without an exit, then r(αi) is a single
vertex for all i.
We now extend Condition (L) to ultragraphs.

Condition (L): Every loop in G has an exit; that is, for any loop α :=
α1 . . . αn there is either an edge e ∈ G1 such that s(e) ∈ r(αi) and e 6= αi+1

for some i, or there is a sink w with w ∈ r(αi) for some i.

A version of the Cuntz-Krieger Uniqueness Theorem for ultragraph alge-
bras first appeared in [43, Theorem 6.1].

Theorem 4.9 (Cuntz-Krieger Uniqueness Theorem). Let G be an ultragraph
satisfying Condition (L). If ρ : C∗(G) → B is a ∗-homomorphism between
C∗-algebras, and if ρ(pv) 6= 0 for all v ∈ G0, then ρ is injective.

Note that if ρ(pv) 6= 0 for all v ∈ G0, then ρ(pA) 6= 0 for all nonempty
A ∈ G0, since pA dominates pv for all v ∈ A.

Furthermore, by the universal property for C∗(G) there exists a gauge
action γz : T → AutC∗(G) with γz(pA) = pA and γz(se) = zse for all A ∈ G0

and e ∈ G1. It is shown in [43, Theorem 6.2] that there is a Gauge-Invariant
Uniqueness Theorem for ultragraph algebras.

Theorem 4.10 (Gauge-Invariant Uniqueness Theorem). Let G be an ultra-
graph, let {se, pA} the canonical generators in C∗(G), and let γ the gauge
action on C∗(G). Also let B be a C∗-algebra, and ρ : C∗(G) → B be a ∗-
homomorphism for which ρ(pv) 6= 0 for all v ∈ G0. If there exists a strongly
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continuous action β of T on B such that βz ◦ ρ = ρ ◦ γz for all z ∈ T, then
ρ is injective.

Conditions for simplicity of an ultragraph algebra have been obtained in
[44]. In order to state these conditions, one needs a notion of saturated
hereditary collections.

Definition 4.11. A subcollection H ⊂ G0 is hereditary if
(1) whenever e is an edge with {s(e)} ∈ H, then r(e) ∈ H
(2) A,B ∈ H, implies A ∪B ∈ H
(3) A ∈ H, B ∈ G0, and B ⊆ A, imply that B ∈ H.

Definition 4.12. A hereditary subcollection H ⊂ G0 is saturated if for any
v ∈ G0 with 0 < |s−1(v)| <∞ we have that

{r(e) : e ∈ G1 and s(e) = v} ⊆ H implies {v} ∈ H.

Then [44, Theorem 3.10] states that an ultragraph algebra G is simple if
and only if G satisfies Condition (L) and G0 contains no saturated hereditary
subcollections other than ∅ and G0.

In addition, the dichotomy holds for simple ultragraph algebras; it is
shown in [44, Proposition 4.5] that every simple ultragraph algebra is either
AF or purely infinite.

Remark 4.13. In the forthcoming article [24] the collection G0 is defined to
be the smallest subcollection of the power set of G0 that contains {v} for all
v ∈ G0, contains r(e) for all e ∈ G1, and is closed under finite intersections,
finite unions, and relative complements (i.e. A,B ∈ G0 implies A \B ∈ G0).
Using this definition, one obtains the same C∗-algebra C∗(G), however, this
alternate definition is sometimes more convenient and allows one to avoid
certain technicalities.

4.3. Cuntz-Pimsner Algebras. The Cuntz-Pimsner algebras are a vast
generalization of graph algebras in which a C∗-algebra is associated to a
C∗-correspondence (sometimes also called a Hilbert bimodule). In addition
to graph algebras, Cuntz-Pimsner algebras generalize crossed products by
Z, ultragraph algebras, and many other well-known C∗-algebras.

Definition 4.14. If A is a C∗-algebra, then a right Hilbert A-module is a
Banach space X together with a right action of A on X and an A-valued
inner product 〈·, ·〉A satisfying

(i) 〈ξ, ηa〉A = 〈ξ, η〉Aa
(ii) 〈ξ, η〉A = 〈η, ξ〉∗A
(iii) 〈ξ, ξ〉A ≥ 0 and ‖ξ‖ = 〈ξ, ξ〉1/2A

for all ξ, η ∈ X and a ∈ A. For a Hilbert A-module X we let L(X) denote
the C∗-algebra of adjointable operators on X, and we let K(X) denote the
closed two-sided ideal of compact operators given by

K(X) := span{Θξ,η : ξ, η ∈ X}
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where ΘX
ξ,η is defined by Θξ,η(ζ) := ξ〈η, ζ〉A.

Definition 4.15. If A is a C∗-algebra, then a C∗-correspondence is a right
Hilbert A-module X together with a ∗-homomorphism φ : A → L(X). We
consider φ as giving a left action of A on X by setting a · x := φ(a)x.

Definition 4.16. If X is a C∗-correspondence over A, then a Toeplitz rep-
resentation of X into a C∗-algebra B is a pair (ψ, π) consisting of a linear
map ψ : X → B and a ∗-homomorphism π : A→ B satisfying

(i) ψ(ξ)∗ψ(η) = π(〈ξ, η〉A)
(ii) ψ(φ(a)ξ) = π(a)ψ(ξ)
(iii) ψ(ξa) = ψ(ξ)π(a)

for all ξ, η ∈ X and a ∈ A.
If (ψ, π) is a Toeplitz representation of X into a C∗-algebra B, we let
C∗(ψ, π) denote the C∗-algebra generated by ψ(X) ∪ π(A).

A Toeplitz representation (ψ, π) is said to be injective if π is injective.
Note that in this case ψ will be isometric since

‖ψ(ξ)‖2 = ‖ψ(ξ)∗ψ(ξ)‖ = ‖π(〈ξ, ξ〉A)‖ = ‖〈ξ, ξ〉A‖ = ‖ξ‖2.

Definition 4.17. For a Toeplitz representation (ψ, π) of a C∗-correspondence
X on B there exists a ∗-homomorphism π(1) : K(X) → B with the property
that

π(1)(Θξ,η) = ψ(ξ)ψ(η)∗.

Definition 4.18. For an ideal I in a C∗-algebra A we define

I⊥ := {a ∈ A : ab = 0 for all b ∈ I}

and we refer to I⊥ as the annihilator of I in A. If X is a C∗-correspondence
over A, we define an ideal J(X) of A by

J(X) := φ−1(K(X)).

We also define an ideal JX of A by

JX := J(X) ∩ (kerφ)⊥.

Definition 4.19. If X is a C∗-correspondence over A, we say that a Toeplitz
representation (ψ, π) is coisometric on JX if

π(1)(φ(a)) = π(a) for all a ∈ JX .

We say that a Toeplitz representation (ψX , πA) which is coisometric on JX
is universal if whenever (ψ, π) is a Toeplitz representation of X into a C∗-
algebra B which is coisometric JX , then there exists a ∗-homomorphism
ρ(ψ,π) : C∗(ψX , πA) → B with the property that ψ = ρ(ψ,π) ◦ ψX and π =
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ρ(ψ,π) ◦ πA. That is, the following diagram commutes:

X
ψ

''
ψX !!C

CC
CC

CC
C

OX
ρ(ψ,π)

// B

A

π

77

πA
=={{{{{{{{

Definition 4.20. IfX is a C∗-correspondence overA, then the Cuntz-Pimsner
algebra OX is the C∗-algebra C∗(ψX , πA) where (ψX , πA) is a universal
Toeplitz representation of X which is coisometric on JX .

Now that we have a definition of the Cuntz-Pimsner algebras OX , we
shall describe how to view graph algebras as Cuntz-Pimsner algebras. In
particular, if E is a directed graph we shall describe how to construct a
C∗-correspondence X(E) from E whose Cuntz-Pimsner algebra OX(E) is
isomorphic to the graph algebra C∗(E).

Example 4.21 (The Graph C∗-correspondence). If E = (E0, E1, r, s) is a
graph, we define A := C0(E0) and

X(E) := {x : E1 → C : the function v 7→
∑

{f∈E1:r(f)=v}

|x(f)|2 is in C0(E0) }.

Then X(E) is a C∗-correspondence over A with the operations

(x · a)(f) := x(f)a(r(f)) for f ∈ E1

〈x, y〉A(v) :=
∑

{f∈E1:r(f)=v}

x(f)y(f) for f ∈ E1

(a · x)(f) := a(s(f))x(f) for f ∈ E1

and we call X(E) the graph C∗-correspondence associated to E. Note that
we could write X(E) =

⊕0
v∈E0 `2(r−1(v)) where this denotes the C0 direct

sum (sometimes called the restricted sum) of the `2(r−1(v))’s. Also note
that X(E) and A are spanned by the point masses {δf : f ∈ E1} and
{δv : v ∈ E0}, respectively.

Theorem 4.22 ([14, Proposition 12]). If E is a graph and X = X(E), then
OX ∼= C∗(E). Furthermore, if (ψX , πA) is a universal Toeplitz representa-
tion of X that is coisometric on JX , then {ψX(δe), πA(δv)} is a universal
Cuntz-Krieger E-family in OX .

We now examine how properties of the graph relate to properties of the
graph correspondence. We say that a C∗-correspondence is full if

span{〈x, y〉 : x, y ∈ X} = A,
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and we say a C∗-correspondence is essential if

span{φ(a)x : x ∈ X and a ∈ A} = X.

It was shown in [16, Proposition 4.4] that

J(X(E)) = span{δv : |s−1(v)| <∞}

and if v emits finitely many edges, then

φ(δv) =
∑

{f∈E1:s(f)=v}

Θδf ,δf and πA(φ(δv)) =
∑

{f∈E1:s(f)=v}

ψX(δf )ψX(δf )∗.

Furthermore, one can see that δv ∈ kerφ if and only if v is a sink in E. Also
δv ∈ span{〈x, y〉A} if and only if v is a source, and since δs(f) ·δf = δf we see
that spanA ·X = X and X(E) is essential. These observations show that
we have the following correspondences between the properties of the graph
E and the properties of the graph C∗-correspondence X(E).

Property of X(E) Property of E
φ(δv) ∈ K(X(E)) v emits a finite number of edges
φ(A) ⊆ K(X(E)) E is row-finite
φ is injective E has no sinks
X(E) is full E has no sources

X(E) is essential always

Remembering these properties will help us as we consider results for
Cuntz-Pimsner algebras. For example, if X is a C∗-correspondence with
φ(A) ⊆ K(X), then the theory for OX is similar to the theory for row-finite
graph algebras. Likewise, if φ(A) ⊆ K(X) and φ is injective, then the theory
for OX is similar to the theory for row-finite graph algebras with no sinks.

Remark 4.23. If E is a graph with no sinks, then φ(δv) = 0 if and only if v
is a sink, and δv ∈ (kerφ)⊥ if and only if v is not a sink. Thus

JX(E) = span{δv : 0 < |s−1(v)| <∞}.

Remark 4.24. Suppose that OX is a Cuntz-Pimsner algebra associated to a
C∗-correspondence X, and that (ψ, π) is a universal Toeplitz representation
of X which is coisometric on JX . Then for any z ∈ T we have that (zψ, π)
is also a universal Toeplitz representation which is coisometric on K. Hence
by the universal property, there exists a homomorphism γz : OX → OX
such that γz(π(a)) = π(a) for all a ∈ A and γz(ψ(ξ)) = zψ(ξ) for all
ξ ∈ X. Since γz−1 is an inverse for this homomorphism, we see that γz is an
automorphism. Thus we have an action γ : T → AutOX with the property
that γz(π(a)) = π(a) and γz(ψ(ξ)) = zψ(ξ).

There exists a Gauge-Invariant Uniqueness Theorem for Cuntz-Pimsner
algebras [22, Theorem 6.4].
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Theorem 4.25 (Gauge-Invariant Uniqueness Theorem). Let X be a C∗-
correspondence and let ρ : OX → B be a ∗-homomorphism between C∗-
algebras with the property that ρ|πA(A) is injective. If there exists a gauge
action β of T on B such that βz ◦ρ = ρ◦γz for all z ∈ T, then ρ is injective.

In addition, the gauge-invariant ideals for a Cuntz-Pimsner algebra can
be classified, in analogy with Theorem 1.6 and Theorem 2.24. As with graph
algebras, this description takes the nicest form when φ(A) ⊆ K(X) and φ is
injective.

Definition 4.26. Let X be a C∗-correspondence over A. We say that an
ideal I /A is X-invariant if φ(I)X ⊆ XI. We say that an X-invariant ideal
I / A is X-saturated if

a ∈ JX and φ(a)X ⊆ XI =⇒ a ∈ I.

The next theorem follows from [28, Theorem 6.4] and [15, Corollary 3.3].

Theorem 4.27. Let X be a C∗-correspondence with the property that φ(A) ⊆
X and φ is injective. Also let (ψX , πA) be a universal Toeplitz representation
of X that is coisometric on JX . Then there is a lattice isomorphism from
the X-saturated X-invariant ideals of A onto the gauge-invariant ideals of
OX given by

I 7→ I(I) := the ideal in OX generated by πA(I).

Furthermore, OX/I(I) ∼= OX/XI , and the ideal I(I) is Morita equivalent to
OXI .

For general C∗-correspondences the gauge-invariant ideals of OX corre-
spond to admissible pairs of ideals (I, J) coming from A. (See [23, Theo-
rem 8.6] for more details.)

Although simplicity of OX has been characterized for C∗-correspondences
satisfying certain hypotheses, there is no general characterization of sim-
plicity for OX . In addition, it is unknown whether there is an analogue of
Condition (L) for C∗-correspondences, and currently there does not exist a
Cuntz-Krieger Uniqueness Theorem for Cuntz-Pimsner algebras. It is also
known that the dichotomy does not hold for Cuntz-Pimnser algebras: there
are simple Cuntz-Pimsner algebras that are neither AF nor purely infinite.

In addition, a six-term exact sequence for the K-groups of OX has been
established in [18, Theorem 8.6] generalizing that of [33, Theorem 4.9]. This
sequence allows one to calculate the K-theory of OX in certain situations.
It is a fact that all possible K-groups can be realized as the K-theory of
Cuntz-Pimsner algebras.

4.4. Topological Quiver Algebras. Because the Cuntz-Pimsner algebras
encompass such a wide class of C∗-algebras and exhibit a variety of behav-
ior, it is sometimes difficult to study them in full generality. Therefore,
authors will sometimes seek a “nice” subclass of Cuntz-Pimsner algebras
whose behavior is similar to familiar C∗-algebras. One such subclass is the
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topological quiver algebras, which we will define by generalizing the con-
struction of the graph C∗-correspondence described in Example 4.21. (We
refer the reader to [29] for a more detailed exposition of topological quivers
and their C∗-algebras.)

Definition 4.28. A topological quiver is a quintuple Q = (E0, E1, r, s, λ)
consisting of a second countable locally compact Hausdorff space E0 (whose
elements are called vertices), a second countable locally compact Hausdorff
space E1 (whose elements are called edges), a continuous open map r :
E1 → E0, a continuous map s : E1 → E0, and a family of Radon measures
λ = {λv}v∈E0 on E1 satisfying the following two conditions:

(1) suppλv = r−1(v) for all v ∈ E0

(2) v 7→
∫
E1 ξ(α)dλv(α) is an element of Cc(E0) for all ξ ∈ Cc(E1).

The term “quiver” was chosen because of the relation of the notion to
ring theory where finite directed graphs are called quivers. In addition, we
see that directed graphs are topological quivers in which the vertex and edge
spaces have the discrete topology and the measure λv is counting measure
for all vertices v.

We mention that if one is given E0, E1, r, and s as described in Defini-
tion 4.28, then there always exists a family of Radon measures λ = {λv}v∈E0

satisfying Conditions (1) and (2) (the existence relies on the fact that E1 is
second countable). However, in general this choice of λ is not unique.

When the map r is a local homeomorphism and λv is chosen as counting
measure, we call the quiver a topological graph. Topological graphs have
been studied extensively in [18, 19, 20, 21].

A topological quiverQ = (E0, E1, r, s, λ) gives rise to a C∗-correspondence
in the following manner: We let A := C0(E0) and define an A-valued inner
product on Cc(E1) by

〈ξ, η〉A(v) :=
∫
r−1(v)

ξ(α)η(α) dλv(α) for v ∈ E0 and ξ, η ∈ Cc(E1).

We shall let X denote the closure of Cc(E1) in the norm arising from this
inner product. We define a right action of A on X by setting

ξ · f(α) := ξ(α)f(r(α)) for α ∈ E1, ξ ∈ Cc(E1), and f ∈ C0(E0)

and extending to all of X. We also define a left action φ : A → L(X) by
setting

φ(f)ξ(α) := f(s(α))ξ(α) for α ∈ E1, ξ ∈ Cc(E1), and f ∈ C0(E0)

and extending to all of X. With this inner product and these actions X is
a C∗-correspondence over A, and we refer to X as the C∗-correspondence
associated to Q.

Definition 4.29. If Q is a topological quiver, then we define C∗(Q) := OX ,
where X is the C∗-correspondence associated to Q. We let (ψQ, πQ) denote
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the universal Toeplitz representation of X into C∗(Q) that is coisometric on
JX .

Since A := C0(E0) is a commutative C∗-algebra, it follows that the ideals
of A correspond to open subsets of E0. In the following definition we identify
some of these subsets for important ideals associated with X.

Definition 4.30. If Q = (E0, E1, r, s, λ) is a topological quiver, we define the
following:

(1) E0
sinks = E0\s(E1)

(2) E0
fin = {v ∈ E0 : there exists a precompact neighborhood V of v such

that s−1(V ) is compact and r|s−1(V ) is a local homeomorphism}
(3) E0

reg := E0
fin\E0

sinks

Remark 4.31. The notation and terminology of Definition 4.30 is meant to
generalize the various types of vertices found in directed graphs. It can
be shown that φ−1(0) = C0(E0

sinks), φ
−1(K(X)) = C0(E0

fin), JX = C0(E0
reg).

And when Q is a discrete graph, the sets E0
sinks, E

0
fin, and E0

reg correspond to
the sinks, finite-emitters, and regular vertices (i.e., vertices that are neither
sinks nor infinite emitters).

Because they are Cuntz-Pimsner algebras, quiver algebras have a natural
gauge action γ : T → AutC∗(Q) with γz(πQ(a)) = πQ(a) and γz(ψQ(x)) =
zψQ(x) for a ∈ A and x ∈ X. There is also a Gauge-Invariant Uniqueness
Theorem for quiver algebras.

Theorem 4.32 (Guage-Invariant Uniqueness Theorem). Let Q be a topolog-
ical quiver and let X be the C∗-correspondence over A associated to Q. Let
ρ : C∗(Q) → B be a ∗-homomorphism between C∗-algebras with the property
that ρ|πQ(A) is injective. If there exists a gauge action β : T → AutB such
that βz ◦ ρ = ρ ◦ γz, then ρ is injective.

In addition, the gauge-invariant ideals of C∗(Q) can be described. In
analogy with graph algebras, this takes the nicest form when E0

reg = E0.

Definition 4.33. Let Q = (E0, E1, r, s, λ) be a topological quiver. We say
that a subset U ⊆ E0 is hereditary if whenever α ∈ E1 and s(α) ∈ U ,
then r(α) ∈ U . We say that a hereditary subset U is saturated if whenever
v ∈ E0

reg and r(s−1(v)) ⊆ U , then v ∈ U .

Theorem 4.34. Let Q = (E0, E1, r, s, λ) be a topological quiver with the
property that E0

reg = E0. Then there is a bijective correspondence from the
set of saturated hereditary open subsets of E0 onto the gauge-invariant ideals
of C∗(Q) given by

U 7→ IU := the ideal in C∗(Q) generated by πQ(C0(U)).

Furthermore, for any saturated hereditary open subset U we have that IU is
Morita equivalent to C∗(QU ), where QU is the subquiver of Q whose vertices
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are U and whose edges are s−1(U), and C∗(Q)/IU ∼= C∗(Q\U), where Q\U
is the subquiver of Q whose vertices are E0 \ U and edges are E1 \ r−1(U).

For general topological quivers, the gauge-invariant ideals of C∗(Q) cor-
respond to pairs (U, V ) of admissible subsets. (See [29, §8] for more details.)

In addition there is a version of Condition (L), and a Cuntz-Krieger
Uniqueness Theorem for quiver algebras. Note that Condition (L) makes
use of the topology on E0.

Condition (L): The set of base points of loops in Q with no exits has empty
interior.

Theorem 4.35 (Cuntz-Krieger Uniqueness Theorem). Let Q be a topolog-
ical quiver that satisfies Condition (L), and let X be the C∗-correspondence
over A associated to Q. If ρ : C∗(Q) → B is a ∗-homomorphism from
C∗(Q) into a C∗-algebra B with the property that the restriction ρ|πQ(A) is
injective, then ρ is injective.

Furthermore, simplicity of quiver algebras has been characterized: The
quiver algebra C∗(Q) is simple if and only if Q satisfies Condition (L) and
there are no saturated hereditary open subsets of E0 other than ∅ and E0

[29, Theorem 10.2].
We mention also that the dichotomy does not hold for quiver algebras:

There are simple quiver algebras that are neither AF nor purely infinite.
Also, a there is version of Condition (K) for quiver algebras.

Definition 4.36. If Q = (E0, E1, r, s, λ) is a topological quiver and v, w ∈ E0,
then we write w ≥ v to mean that there is a path α ∈ En with s(α) = w
and r(α) = v. We also define v≥ := {w ∈ E0 : w ≥ v}.

Condition (K): The set

{v ∈ E0 : v is the base point of exactly one simple loop

and v is isolated in v≥ }
is empty.

Theorem 4.37. ([29, Theorem 9.10]) Let Q = (E0, E1, r, s, λ) be a topolog-
ical quiver that satisfies Condition (K). Then every ideal in C∗(Q) is gauge
invariant.

Remark 4.38. It has been shown by Katsura that every AF algebra is iso-
morphic to the C∗-algebra of a topological graph, and that every Kirchberg-
Phillips algebra is isomorphic to the C∗-algebra of a topological graph. In
addition, in a forthcoming paper of Katsura, Muhly, Sims, and Tomforde it
will be shown that every ultragraph algebra is the C∗-algebra of a topological
graph. Hence the class of quiver algebras contains all ultragraph algebras
and also all Exel-Laca algebras. Furthermore, the only known conditions



THE STRUCTURE OF GRAPH C*-ALGEBRAS AND THEIR GENERALIZATIONS 57

that a topological graph algebra must satisfy are: (1) it must be nuclear,
and (2) it must satisfy the UCT. At the time of this writing it is an open
question whether any nuclear C∗-algebra satisfying the UCT is isomorphic
to a topological graph algebra.
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